Tumor Biology

, Volume 35, Issue 5, pp 4057–4066 | Cite as

Higher circulating expression levels of miR-221 associated with poor overall survival in renal cell carcinoma patients

  • Ana L. Teixeira
  • Marta Ferreira
  • Joana Silva
  • Mónica Gomes
  • Francisca Dias
  • Juliana I. Santos
  • Joaquina Maurício
  • Francisco Lobo
  • Rui Medeiros
Research Article

Abstract

The mechanisms involved in renal cell carcinoma (RCC) development and progression remain unclear, and new biomarkers for early detection, follow-up of the disease and prognosis are needed in routine practice to improve the diagnostic and/or prognostic accuracy. There is increasing evidence that microRNAs (miRNAs) are involved in cancer development and progression. The up-regulation of miR-221/222 has been described in several human cancers, and during RCC development, this up-regulation can modulate the metastatic process. Our purpose was to investigate the circulating expression levels of miR-221/222 as potential biomarkers for RCC detection and their influence in patients' overall survival. The circulating miR-221/222 was studied by relative quantification in 77 plasma samples. A follow-up study was undertaken to evaluate the overall survival. We observed that RCC patients presented higher circulating expression levels of miR-221 and miR-222 than healthy individuals (2−ΔΔCt = 2.8, P = 0.028; 2−ΔΔCt = 2.2, P = 0.044, respectively). The RCC patients with metastasis at diagnosis also presented higher circulating expression levels of miR-221 than patients with no metastasis (2−ΔΔCt = 10.9, P = 0.001). We also observed a significantly lower overall survival in patients with higher expression levels of miR-221 (48 vs 116 months, respectively; P = 0.024). Furthermore, multivariate Cox regression analysis using the tumour, nodes and metastasis stage (TNM stage); Fuhrman nuclear grade and age (≥60 years) as covariants demonstrated a higher risk of specific death by cancer in patients who presented higher expression levels of miR-221 (hazard ratio (HR) = 10.7, 95 % confidence interval 1.33–85.65, P = 0.026). The concordance (c) index showed that the definition of profiles that contain information regarding tumour characteristics associated with circulating miR-221 expression information presents an increased capacity to predict the risk of death by RCC (c index model 1, 0.800 vs model 2, 0.961). Our results, which identified the plasma miR-221/222 at variable levels during RCC development, suggest that these miRNAs may have a potential as noninvasive biomarkers of RCC development.

Keywords

Renal cell carcinoma Plasma circulating miRs miR-221/222 Noninvasive biomarkers 

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Bukowski RM. Prognostic factors for survival in metastatic renal cell carcinoma. Cancer. 2009;115(S10):2273–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Linehan WM, Pinto PA, Srinivasan R, Merino M, Choyke P, Choyke L, et al. Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapeutics. Clin Cancer Res. 2007;13(2 Pt 2):671s–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Sahi C, Knox JJ, Clemons M, Joshua AM, Broom R. Renal cell carcinoma bone metastases: clinical advances. Ther Adv Med Oncol. 2010;2(2):75–83.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baker CH, Pino MS, Fidler IJ. Phosphorylated epidermal growth factor receptor on tumor-associated endothelial cells in human renal cell carcinoma is a primary target for therapy by tyrosine kinase inhibitors. Neoplasia. 2006;8(6):470–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Motzer RJ, Molina AM. Targeting renal cell carcinoma. J Clin Oncol. 2009;27(20):3274–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Heng DY, Kollmannsberger C. State-of-the-art treatment of metastatic renal cell carcinoma. Curr Oncol. 2009;16 Suppl 1:S16–23.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Parker AS, Kosari F, Lohse CM, Houston Thompson R, Kwon ED, Murphy L, et al. High expression levels of survivin protein independently predict a poor outcome for patients who undergo surgery for clear cell renal cell carcinoma. Cancer. 2006;107(1):37–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Pfaffenroth EC, Linehan WM. Genetic basis for kidney cancer: opportunity for disease-specific approaches to therapy. Expert Opin Biol Ther. 2008;8(6):779–90.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.CrossRefPubMedGoogle Scholar
  11. 11.
    Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2013;25:25.Google Scholar
  12. 12.
    Aslam MI, Taylor K, Pringle JH, Jameson JS. MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg. 2009;96(7):702–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer—new paradigms in molecular oncology. Curr Opin Cell Biol. 2009;21(3):470–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Shomron N. MicroRNAs and pharmacogenomics. Pharmacogenomics. 2010;11(5):629–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Hornstein E, Shomron N. Canalization of development by microRNAs. Nat Genet. 2006;38(Suppl):S20–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Shi D, Li P, Ma L, Zhong D, Chu H, Yan F, et al. A genetic variant in pre-miR-27a is associated with a reduced renal cell cancer risk in a Chinese population. PLoS One. 2012;7(10):e46566.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Calore F, Lovat F, Garofalo M. Non-coding RNAs and cancer. Int J Mol Sci. 2013;14(8):17085–110.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.CrossRefPubMedGoogle Scholar
  19. 19.
    Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009;136(4):777–93.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Teixeira AL, Gomes M, Medeiros R. EGFR signaling pathway and related-miRNAs in age-related diseases: the example of miR-221 and miR-222. Front Genet. 2012;3(286):7.Google Scholar
  21. 21.
    Lorenzen JM, Thum T. Circulating and urinary microRNAs in kidney disease. Clin J Am Soc Nephrol. 2012;7(9):1528–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41(6):1897–912.PubMedGoogle Scholar
  23. 23.
    Xu L, Liang YN, Luo XQ, Liu XD, Guo HX. Association of miRNAs expression profiles with prognosis and relapse in childhood acute lymphoblastic leukemia. Zhonghua Xue Ye Xue Za Zhi. 2011;32(3):178–81.PubMedGoogle Scholar
  24. 24.
    Catto JWF, Alcaraz A, Bjartell AS, de Vere WR, Evans CP, Fussel S, et al. MicroRNA in prostate, bladder and kidney cancer: a systematic review. Eur Urol. 2011;59:671–81.CrossRefPubMedGoogle Scholar
  25. 25.
    Shah MY, Calin GA. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med. 2011;3(8):56.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang C, Zhang J, Hao J, Shi Z, Wang Y, Han L, et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med. 2012;10:119.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15(16):5073–81.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:367.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cinti C, Vindigni C, Zamparelli A, La Sala D, Epistolato MC, Marrelli D, et al. Activated Akt as an indicator of prognosis in gastric cancer. Virchows Arch. 2008;453(5):449–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med. 2012;10(55):1479–5876.Google Scholar
  31. 31.
    Hauser S, Wulfken LM, Holdenrieder S, Moritz R, Ohlmann CH, Jung V, et al. Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol. 2012;36(4):391–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Dias F, Teixeira AL, Santos JI, Gomes M, Nogueira A, Assis J, et al. Renal cell carcinoma development and miRNAs: a possible link to the EGFR pathway. Pharmacogenomics. 2013;14(14):1793–803.CrossRefPubMedGoogle Scholar
  33. 33.
    Iwamoto H, Kanda Y, Sejima T, Osaki M, Okada F, Takenaka A. Serum miR-210 as a potential biomarker of early clear cell renal cell carcinoma. Int J Oncol. 2014;44(1):53–8.PubMedGoogle Scholar
  34. 34.
    Zhao A, Li G, Peoc'h M, Genin C, Gigante M. Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp Mol Pathol. 2013;94(1):115–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Coppola V, De Maria R, Bonci D. MicroRNAs and prostate cancer. Endocr Relat Cancer. 2010;17(1):F1–17. doi:ERC-09-0172.CrossRefPubMedGoogle Scholar
  36. 36.
    Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med. 2012;10:55.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Youssef YM, White NM, Grigull J, Krizova A, Samy C, Mejia-Guerrero S, et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur Urol. 2011;59(5):721–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F, et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One. 2011;6(9):e25787.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhou L, Yang H. The von Hippel-Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR. PLoS One. 2011;6(9):e23936.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    de Paulsen N, Brychzy A, Fournier MC, Klausner RD, Gnarra JR, Pause A, et al. Role of transforming growth factor-alpha in von Hippel–Lindau (VHL)(−/−) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci U S A. 2001;98(4):1387–92.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Natl Acad Sci U S A. 2007;104(32):13092–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shah M, Calin G. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Medicine. 2011;3(8):56.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25(10):1674–80.CrossRefPubMedGoogle Scholar
  44. 44.
    Santhekadur PK, Das SK, Gredler R, Chen D, Srivastava J, Robertson C, et al. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor kappaB and miR-221. J Biol Chem. 2012;287(17):13952–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sun Y, Yu S, Liu Y, Wang F, Xiao H. Expression of miRNAs in papillary thyroid carcinomas is associated with BRAF mutation and clinicopathological features in Chinese patients. Int J Endocrinol. 2013;128735(10):11.Google Scholar
  46. 46.
    Walter BA, Valera VA, Pinto PA, Merino MJ. Comprehensive microRNA profiling of prostate cancer. J Cancer. 2013;4(5):350–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yang CJ, Shen WG, Liu CJ, Chen YW, Lu HH, Tsai MM, et al. miR-221 and miR-222 expression increased the growth and tumorigenesis of oral carcinoma cells. J Oral Pathol Med. 2011;40(7):560–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhao H, Dupont J, Yakar S, Karas M, LeRoith D. PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells. Oncogene. 2004;23(3):786–94.CrossRefPubMedGoogle Scholar
  49. 49.
    Ge H, Cao YY, Chen LQ, Wang YM, Chen ZF, Wen DG, et al. PTEN polymorphisms and the risk of esophageal carcinoma and gastric cardiac carcinoma in a high incidence region of China. Dis Esophagus. 2008;21(5):409–15.CrossRefPubMedGoogle Scholar
  50. 50.
    Pappas G, Zumstein LA, Munshi A, Hobbs M, Meyn RE. Adenoviral-mediated PTEN expression radiosensitizes non-small cell lung cancer cells by suppressing DNA repair capacity. Cancer Gene Ther. 2007;14(6):543–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu Y, Cui H, Wang W, Li L, Wang Z, Yang S, et al. Construction of circular miRNA sponges targeting miR-21 or miR-221 and demonstration of their excellent anticancer effects on malignant melanoma cells. Int J Biochem Cell Biol. 2013;45(11):2643–50.CrossRefPubMedGoogle Scholar
  52. 52.
    Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011;30(9):1082–97.CrossRefPubMedGoogle Scholar
  53. 53.
    Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, et al. Regulation of the p27 (Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007;26(15):3699–708.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Abben KK, Luth TH, Janssen-Heijnen ML. No improvement in renal cell carcinoma survival: a population-based study in the Netherlands. Eur J Cancer. 2008;44:1701–9.CrossRefGoogle Scholar
  56. 56.
    Kawakami K, Enokida H, Chiyomaru T, Tatarano S, Yoshino H, Kagara I, et al. The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur J Cancer. 2012;48:827–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Furniss D, Harnden P, Ali N, Royston P, Eisen T, Oliver RT, et al. Prognostic factors for renal cell carcinoma. Cancer Treat Rev. 2008;34:407–26.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Ana L. Teixeira
    • 1
    • 2
  • Marta Ferreira
    • 3
  • Joana Silva
    • 1
  • Mónica Gomes
    • 1
    • 2
    • 4
  • Francisca Dias
    • 1
    • 2
  • Juliana I. Santos
    • 1
    • 2
  • Joaquina Maurício
    • 3
  • Francisco Lobo
    • 5
  • Rui Medeiros
    • 1
    • 2
    • 4
    • 6
  1. 1.Molecular Oncology GroupPortuguese Institute of Oncology of PortoPortoPortugal
  2. 2.ICBAS, Abel Salazar Institute for the Biomedical SciencesUniversity of PortoPortoPortugal
  3. 3.Medical Oncology DepartmentPortuguese Institute of Oncology of PortoPortoPortugal
  4. 4.Research DepartmentLPCC- Portuguese League Against Cancer (NRNorte)PortoPortugal
  5. 5.Urology DepartmentPortuguese Institute of Oncology of PortoPortoPortugal
  6. 6.CEBIMED, Faculty of Health SciencesFernando Pessoa UniversityPortoPortugal

Personalised recommendations