Tumor Biology

, Volume 35, Issue 4, pp 3471–3485

Genome-wide pathway analysis in neuroblastoma

Research Article

Abstract

The aim of this study was to identify candidate single-nucleotide polymorphisms (SNPs) that might play a role in susceptibility to neuroblastoma, elucidate their potential mechanisms, and generate SNP-to-gene-to-pathway hypotheses. A genome-wide association study (GWAS) dataset of neuroblastoma that included 442,976 SNPs from 1,627 neuroblastoma patients and 3,254 control subjects of European descent was used in this study. The identify candidate causal SNPs and pathways (ICSNPathway) analysis was applied to the GWAS dataset. ICSNPathway analysis identified 15 candidate SNPs, 10 genes, and 31 pathways, which revealed 10 hypothetical biological mechanisms. The strongest hypothetical biological mechanism was one wherein SNPrs40401 modulates the role of IL3 in several pathways and conditions, including the stem pathway, asthma (hsa05310), the dendritic cell pathway, and development (0.001 < p < 0.004; 0.001 < FDR < 0.033). The second strongest mechanism identified was that in which rs1048108 and rs16852600 alter the function of BARD1, which negatively regulates developmental process and modulates processes including cell development and programmed cell death (0.001 < p < 0.004; 0.001 < FDR < 0.033). The third mechanism identified was one wherein rs1939212 modulated CFL1, resulting in negative regulation of development, cell death, neural crest cell migration, and apoptosis (0.001 < p < 0.004; 0.001 < FDR < 0.033). By using the ICSNPathway to analyze neuroblastoma GWAS data, 15 candidate SNPs, 10 genes including IL3, BARD1, and CFL, and 31 pathways were identified that might contribute to the susceptibility of patients to neuroblastoma.

Keywords

Neuroblastoma Genome-wide association study Pathway-based analysis 

References

  1. 1.
    Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369(9579):2106–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Sridhar S, Al-Moallem B, Kamal H, Terrile M, Stallings RL. New insights into the genetics of neuroblastoma. Mol Diagn Ther. 2013;17(2):63–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Capasso M, Diskin SJ, Totaro F, Longo L, De Mariano M, Russo R, et al. Replication of GWAS-identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility. Carcinogenesis. 2013;34(3):605–11.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Latorre V, Diskin SJ, Diamond MA, Zhang H, Hakonarson H, Maris JM, et al. Replication of neuroblastoma SNP association at the BARD1 locus in African-Americans. Cancer Epidemiol Biomarkers Prev. 2012;21(4):658–63.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Capasso M, Devoto M, Hou C, Asgharzadeh S, Glessner JT, Attiyeh EF, et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet. 2009;41(6):718–23.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson AD, O'Donnell CJ. An open access database of genome-wide association results. BMC Med Genet. 2009;10:6.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11(12):843–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee YH, Song GG. Pathway analysis of genome-wide association studies on uric acid concentrations. Hum Immunol. 2012;73(8):805–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep. 2012;39(12):10627–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang K, Chang S, Cui S, Guo L, Zhang L, Wang J. ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework. Nucleic Acids Res. 2011;39(Web Server issue):W437–43.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    International HapMap C, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–8.CrossRefGoogle Scholar
  13. 13.
    Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38(Database issue):D355–60.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24(24):2938–9.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Choi SJ, Rho YH, Ji JD, Song GG, Lee YH. Genome scan meta-analysis of rheumatoid arthritis. Rheumatology (Oxford). 2006;45(2):166–70.CrossRefGoogle Scholar
  17. 17.
    Lee YH, Nath SK. Systemic lupus erythematosus susceptibility loci defined by genome scan meta-analysis. Hum Genet. 2005;118(3–4):434–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association studies. Pharmacogenomics. 2009;10(2):191–201.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, Wijmenga C, et al. Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol. 2009;33(5):419–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Fridley BL, Biernacka JM. Gene set analysis of SNP data: benefits, challenges, and future directions. Eur J Hum Genet. 2011;19(8):837–43.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Pedroso I, Breen G. Gene set analysis and network analysis for genome-wide association studies. Cold Spring Harb Protoc. 2011;2011(9).Google Scholar
  22. 22.
    Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18(2):189–218.PubMedCrossRefGoogle Scholar
  23. 23.
    Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, et al. BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem. 2004;279(30):31251–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell. 2003;12(5):1087–99.PubMedCrossRefGoogle Scholar
  25. 25.
    Thai TH, Du F, Tsan JT, Jin Y, Phung A, Spillman MA, et al. Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum Mol Genet. 1998;7(2):195–202.PubMedCrossRefGoogle Scholar
  26. 26.
    Bosse KR, Diskin SJ, Cole KA, Wood AC, Schnepp RW, Norris G, et al. Common variation at BARD1 results in the expression of an oncogenic isoform that influences neuroblastoma susceptibility and oncogenicity. Cancer Res. 2012;72(8):2068–78.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Thirone AC, Speight P, Zulys M, Rotstein OD, Szaszi K, Pedersen SF, et al. Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response. Am J Physiol Cell Physiol. 2009;296(3):C463–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Chai X, Forster E, Zhao S, Bock HH, Frotscher M. Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci. 2009;29(1):288–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Frotscher M, Chai X, Bock HH, Haas CA, Forster E, Zhao S. Role of Reelin in the development and maintenance of cortical lamination. J Neural Transm. 2009;116(11):1451–5.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  1. 1.Division of Rheumatology, Department of Internal MedicineKorea University Anam Hospital, Korea University College of MedicineSeoulSouth Korea

Personalised recommendations