Tumor Biology

, Volume 35, Issue 4, pp 3409–3414

Genetic variations at microRNA and processing genes and risk of oral cancer

  • Roshni Roy
  • Navonil De Sarkar
  • Sandip Ghose
  • Ranjan R. Paul
  • Mousumi Pal
  • Chandrika Bhattacharya
  • Shweta K Roy Chowdhury
  • Saurabh Ghosh
  • Bidyut Roy
Research Article

Abstract

Genetic variations at microRNA and microRNA processing genes are known to confer risk of cancer in different populations. Here, we studied variations at eight microRNA (miRNA) and four miRNA processing genes in 452 controls and 451 oral cancer patients by TaqMan genotyping assays. Variant allele-containing genotypes at mir-196a2 and variant allele homozygous genotype at Ran increased the risk of cancer significantly [adjusted odds ratio (OR) (95 % confidence interval (CI)) = 1.3 (1–1.7) and 2.3 (1.1–4.6), respectively]. Conversely, variant allele-containing genotypes at mir-34b and variant allele homozygous genotype at Gemin3 reduced the risk of cancer significantly [adjusted OR (95 % CI) = 0.7 (0.5–0.9) and 0.6 (0.4–1), respectively]. Cumulative risk was also increased by three times with increase in the number of risk alleles at these four loci. In tobacco stratified analysis, variant allele homozygous genotypes at mir-29a and Ran increased [adjusted OR (95 % CI) = 1.5 (1–2.3) and 3 (1.1-8.4) respectively], while variant allele-containing genotypes at mir-34b decreased [adjusted OR (95 % CI) = 0.6 (0.4–0.9)] the risk of cancer significantly. Thus, genetic variation at miRNA and processing genes altered the risk of oral cancer in this population thereby corroborating studies in other populations. However, it is necessary to validate this result in different Indian sub populations with larger sample sizes and examine the effect of these variations in tumour tissues to explain the mechanism of risk alteration.

Keywords

Oral cancer microRNA Genetic variation Cumulative risk 

References

  1. 1.
    Elango JK, Gangadharan P, Sumithra S, Kuriakose MA. Trends of head and neck cancers in urban and rural India. Asian Pac J Cancer Prev. 2006;7(1):108–12.PubMedGoogle Scholar
  2. 2.
    Sankaranarayanan R, Ramadas K, Thomas G, Muwonge R, Thara S, Mathew B, et al. Effect of screening on oral cancer mortality in Kerala, India: a cluster-randomised controlled trial. Lancet. 2005;365(9475):1927–33. doi:10.1016/S0140-6736(05)66658-5.PubMedCrossRefGoogle Scholar
  3. 3.
    Tanaka T, Tanaka M. Oral carcinogenesis and oral cancer chemoprevention: a review. Pathol Res Int. 2011;2011:431246. doi:10.4061/2011/431246.CrossRefGoogle Scholar
  4. 4.
    Coelho KR. Challenges of the oral cancer burden in India. J Cancer Epidemiol. 2012;2012:701932. doi:10.1155/2012/701932.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ambros V. The functions of animal microRNAs. Nature. 2001;431:350–5.CrossRefGoogle Scholar
  6. 6.
    Bartel B. MicroRNAs directing siRNA biogenesis. Nat Struct Mol Biol. 2005;12:569–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Jin Y, Lee CGL. Single nucleotide polymorphisms associated with microRNA regulation. Biomolecules. 2013;3:287–302. doi:10.3390/biom3020287.CrossRefGoogle Scholar
  10. 10.
    Wiklund ED, Gao S, Hulf T, Sibbritt T, Nair S, Costea DE, et al. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma. PLoS ONE. 2011;6(11):e27840. doi:10.1371/journal.pone.0027840 PONE-D-11-13192.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Majumder M, Sikdar N, Ghosh S, Roy B. Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators. Int J Cancer. 2007;120(10):2148–56. doi:10.1002/ijc.22547.PubMedCrossRefGoogle Scholar
  12. 12.
    Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Clague J, Lippman SM, Yang H, Hildebrandt MA, Ye Y, Lee JJ, et al. Genetic variation in MicroRNA genes and risk of oral premalignant lesions. Mol Carcinog. 2010;49(2):183–9. doi:10.1002/mc.20588.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68(7):2094–105. doi:10.1158/0008-5472.CAN-07-5194.PubMedCrossRefGoogle Scholar
  15. 15.
    Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA, et al. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila). 2008;1(6):460–9. doi:10.1158/1940-6207.CAPR-08-0135.CrossRefGoogle Scholar
  16. 16.
    Chen D, Cabay RJ, Jin Y, Wang A, Luo Y, Shah-Khan M et al. MicroRNA deregulations in head and neck squamous cell carcinomas. J Oral Maxillofac Res. 2013; 4(1). doi:10.5037/jomr.2013.4102.
  17. 17.
    Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007;104(40):15805–10. doi:10.1073/pnas.0707628104.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118(7):2600–8. doi:10.1172/JCI34934.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-–75. doi:10.1086/519795.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289–300.Google Scholar
  21. 21.
    Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A, et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes. 2010;59(8):2068–74. doi:10.2337/db09-1386.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Znaor A, Brennan P, Gajalakshmi V, Mathew A, Shanta V, Varghese C, et al. Independent and combined effects of tobacco smoking, chewing and alcohol drinking on the risk of oral, pharyngeal and esophageal cancers in Indian men. Int J Cancer. 2003;105(5):681–6. doi:10.1002/ijc.11114.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu Z, Li G, Wei S, Niu J, El-Naggar AK, Sturgis EM, et al. Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. Cancer. 2010;116(20):4753–60. doi:10.1002/cncr.25323.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Christensen BC, Avissar-Whiting M, Ouellet LG, Butler RA, Nelson HH, McClean MD, et al. Mature microRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer. Clin Cancer Res. 2010;16(14):3713–20. doi:10.1158/1078-0432.CCR-10-0657.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Xu Y, Liu L, Liu J, Zhang Y, Zhu J, Chen J, et al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int J Cancer. 2011;128(2):412–7. doi:10.1002/ijc.25342.PubMedCrossRefGoogle Scholar
  26. 26.
    Li L, Wu J, Sima X, Bai P, Deng W, Deng X, et al. Interactions of miR-34b/c and TP-53 polymorphisms on the risk of nasopharyngeal carcinoma. Tumour Biol. 2013;34(3):1919–23. doi:10.1007/s13277-013-0736-9.PubMedCrossRefGoogle Scholar
  27. 27.
    Bensen JT, Tse CK, Nyante SJ, Barnholtz-Sloan JS, Cole SR, Millikan RC. Association of germline microRNA SNPs in pre-miRNA flanking region and breast cancer risk and survival: the Carolina Breast Cancer Study. Cancer Causes Control. 2013;24(6):1099–109. doi:10.1007/s10552-013-0187-z.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Li YC, Song CH, Yang WJ, Dai LP, Wang P, Shi JX, et al. [Correlation between tag single nucleotide polymorphisms of microRNA regulatory genes and the genetic susceptibility of primary liver cancer]. Zhonghua Yu Fang Yi Xue Za Zhi. 2012;46(6):533–7.PubMedGoogle Scholar
  29. 29.
    Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, et al. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer. 2009;45(17):3104–18. doi:10.1016/j.ejca.2009.09.014.PubMedCrossRefGoogle Scholar
  30. 30.
    Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res. 2010;16(4):1129–39. doi:10.1158/1078-0432.CCR-09-2166.PubMedCrossRefGoogle Scholar
  31. 31.
    Barkley LR, Santocanale C. MicroRNA-29a regulates the benzo[a]pyrene dihydrodiol epoxide-induced DNA damage response through Cdc7 kinase in lung cancer cells. Oncogenesis. 2013;2:e57. doi:10.1038/oncsis.2013.20.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Roshni Roy
    • 1
  • Navonil De Sarkar
    • 1
  • Sandip Ghose
    • 2
  • Ranjan R. Paul
    • 2
  • Mousumi Pal
    • 2
  • Chandrika Bhattacharya
    • 3
  • Shweta K Roy Chowdhury
    • 3
  • Saurabh Ghosh
    • 1
  • Bidyut Roy
    • 1
  1. 1.Human Genetics UnitIndian Statistical InstituteKolkataIndia
  2. 2.Oral Pathology DepartmentGuru Nanak Institute of Dental Science and ResearchKolkataIndia
  3. 3.National Institute of Bio Medical GenomicsKalyaniIndia

Personalised recommendations