Advertisement

Tumor Biology

, Volume 35, Issue 4, pp 2883–2892 | Cite as

MicroRNAs delivered by extracellular vesicles: an emerging resistance mechanism for breast cancer

  • Wei-xian Chen
  • Shan-liang Zhong
  • Ming-hua Ji
  • Meng Pan
  • Qing Hu
  • Meng-meng Lv
  • Zhou Luo
  • Jian-hua Zhao
  • Jin-hai Tang
Review

Abstract

Resistance to chemotherapy and endocrine therapy as well as targeted drugs is a major problem in treatment of breast cancer. Over the last decades, emerging studies have revealed that extracellular vesicles, which are chronically released by breast cancer cells and surrounding stromal cells, influence the action of most commonly used therapeutics. Such modulatory effects have been related to the transport of biologically active molecules including proteins and functional microRNAs. In this review, we highlight recent studies regarding extracellular vesicle-mediated microRNA delivery in formatting drug resistance. We also suggest the use of extracellular vesicles as a promising method in antiresistance treatment.

Keywords

Microvesicles Exosomes Drug resistance Breast cancer MicroRNAs Extracellular vesicles 

Abbreviations

EV

Extracellular vesicle

BCa

Breast cancer

miRNA

MicroRNA

mRNA

Message RNA

P-gp

P-glycoprotein

mdr 1

Multidrug resistance 1

PDGF

Platelet-derived growth factor

EGFR

Epidermal growth factor receptor

ECs

Endothelial cells

VEGF

Vascular endothelial growth factor

TLR

Toll-like receptor

TAMs

Tumor-associated macrophages

DCs

Dendritic cells

siRNA

Small interfering RNA

EGF

Epidermal growth factor

Notes

Acknowledgments

We would like to acknowledge the funding body for supporting this work: the National Natural Science Foundation of China provided to Jin-hai Tang and Jian-hua Zhao. We also thank Jian-Zhong Wu for his discussions and help in our manuscript.

Conflicts of interest

None

References

  1. 1.
    Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee TH, D'Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J. Microvesicles as mediators of intercellular communication in cancer–the emerging science of cellular ‘debris’. Semin Immunopathol. 2011;33(5):455–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor DD, Gercel-Taylor C. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol. 2011;33(5):441–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Bussolati B, Grange C, Camussi G. Tumor exploits alternative strategies to achieve vascularization. FASEB J. 2011;25(9):2874–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91(4):431–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Goler-Baron V, Assaraf YG. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance. PLoS One. 2011;6(1):e16007.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 2012;227(2):658–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Bebawy M, Combes V, Lee E, Jaiswal R, Gong J, Bonhoure A, et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia. 2009;23(9):1643–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Pasquier J, Galas L, Boulangé-Lecomte C, Rioult D, Bultelle F, Magal P, et al. Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem. 2012;287(10):7374–87.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Chiba M, Kimura M, Asari S. Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep. 2012;28(5):1551–8.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Gong J, Jaiswal R, Mathys JM, Combes V, Grau GE, Bebawy M. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev. 2012;38(3):226–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kong YW, Ferland-McCollough D. Jackson TJ. Bushell M microRNAs in cancer managementLancet Oncol. 2012;13(6):e249–58.Google Scholar
  18. 18.
    Sarkar FH, Li Y, Wang Z, Kong D, Ali S. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat. 2010;13(3):57–66.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15(17):5473–7.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28(6):655–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Palma J, Yaddanapudi SC, Pigati L, Havens MA, Jeong S, Weiner GA, et al. MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Res. 2012;40(18):9125–38.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Li L, Zhu D, Huang L, Zhang J, Bian Z, Chen X, et al. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One. 2012;7(10):e46957.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem. 2013;288(10):7105–16.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Keith WN, Stallard S, Brown R. Expression of mdr1 and gst-pi in human breast tumours: comparison to in vitro chemosensitivity. Br J Cancer. 1990;61(5):712–6.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 2010;5(10):e13515.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Goda K, Bacsó Z, Szabó G. Multidrug resistance through the spectacle of P-glycoprotein. Curr Cancer Drug Targets. 2009;9(3):281–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Bergamaschi A, Katzenellenbogen BS. Tamoxifen downregulation of miR-451 increases 14-3-3ζ and promotes breast cancer cell survival and endocrine resistance. Oncogene. 2012;31(1):39–47.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Kastl L, Brown I, Schofield AC. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat. 2012;131(2):445–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Jung EJ, Santarpia L, Kim J, Esteva FJ, Moretti E, Buzdar AU, et al. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer. 2012;118(10):2603–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila). 2009;2(9):807–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013;32(1–2):303–15.PubMedCrossRefGoogle Scholar
  39. 39.
    Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci. 2012;13(8):9545–71.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Hervé JC, Derangeon M. Gap-junction-mediated cell-to-cell communication. Cell Tissue Res. 2013;352(1):21–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Singer SJ. Intercellular communication and cell-cell adhesion. Science. 1992;255(5052):1671–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Imagawa W, Pedchenko VK, Helber J, Zhang H. Hormone/growth factor interactions mediating epithelial/stromal communication in mammary gland development and carcinogenesis. J Steroid Biochem Mol Biol. 2002;80(2):213–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22(3):125–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Hannafon BN, Ding WQ. Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci. 2013;14(7):14240–69.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Ng CK, Pemberton HN, Reis-Filho JS. Breast cancer intratumor genetic heterogeneity: causes and implications. Expert Rev Anticancer Ther. 2012;12(8):1021–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Levchenko A, Mehta BM, Niu X, Kang G, Villafania L, Way D, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci U S A. 2005;102(6):1933–8.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Jaiswal R, Luk F, Dalla PV, Grau GE, Bebawy M. Breast cancer-derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PLoS One. 2013;8(4):e61515.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Jaiswal R, Gong J, Sambasivam S, Combes V, Mathys JM, Davey R, et al. Microparticle-associated nucleic acids mediate trait dominance in cancer. FASEB J. 2012;26(1):420–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Jaiswal R, Luk F, Gong J, Mathys JM, Grau GE, Bebawy M. Microparticle conferred microRNA profiles–implications in the transfer and dominance of cancer traits. Mol Cancer. 2012;11:37.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011;54(4):1237–48.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Gradilone A, Naso G, Raimondi C, Cortesi E, Gandini O, Vincenzi B, et al. Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Ann Oncol. 2011;22(1):86–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011;121(10):3804–9.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov. 2013;12(3):217–28.PubMedCrossRefGoogle Scholar
  54. 54.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110(18):7312–7.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A. 2009;106(10):3794–9.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012;31(17):3513–23.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849–59.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71(15):5346–56.PubMedCrossRefGoogle Scholar
  60. 60.
    Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 2005;35(2):169–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res. 2006;66(18):9290–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 2010;5(7):e11469.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Ashiru O, Boutet P, Fernández-Messina L, Agüera-González S, Skepper JN, Valés-Gómez M, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70(2):481–9.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109(31):E2110–6.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Hayes E, Nicholson RI, Hiscox S. Acquired endocrine resistance in breast cancer: implications for tumour metastasis. Front Biosci (Landmark Ed). 2011;16:838–48.PubMedCrossRefGoogle Scholar
  68. 68.
    Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Brański P, et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother. 2006;55(7):808–18.PubMedCrossRefGoogle Scholar
  69. 69.
    Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542–56.PubMedCrossRefGoogle Scholar
  71. 71.
    Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A. 2011;108(12):4852–7.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 2012;26(12):1287–99.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Mansfield AS, Heikkila P, von Smitten K, Vakkila J, Leidenius M. Metastasis to sentinel lymph nodes in breast cancer is associated with maturation arrest of dendritic cells and poor co-localization of dendritic cells and CD8+ T cells. Virchows Arch. 2011;459(4):391–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A. 2010;107(14):6328–33.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Lazzeri E, Romagnani P. CXCR3-binding chemokines: novel multifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5(1):109–18.PubMedCrossRefGoogle Scholar
  77. 77.
    Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González M, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121(6):984–95.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Cekaite L, Clancy T, Sioud M. Increased miR-21 expression during human monocyte differentiation into DCs. Front Biosci (Elite Ed). 2010;2:818–28.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39(1):133–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Baer C, Squadrito ML, Iruela-Arispe ML, De Palma M. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches. Exp Cell Res. 2013. doi: 10.1016/j.yexcr.2013.03.026.PubMedGoogle Scholar
  82. 82.
    Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 2010;5(7):e11803.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura K, et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun. 2010;398(4):723–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol. 2013;31(17):2205–18.PubMedCrossRefGoogle Scholar
  85. 85.
    van den Boorn JG, Schlee M, Coch C, Hartmann G. SiRNA delivery with exosome nanoparticles. Nat Biotechnol. 2011;29(4):325–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012;7:1525–41.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther. 2013;21(1):101–8.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Mol Ther. 2013;21(1):185–91.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    O'Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12(2):201.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, Shapiro C, et al. Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem. 2011;286(49):42292–302.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Wei-xian Chen
    • 1
    • 2
  • Shan-liang Zhong
    • 3
  • Ming-hua Ji
    • 2
  • Meng Pan
    • 1
  • Qing Hu
    • 2
    • 4
  • Meng-meng Lv
    • 1
    • 2
  • Zhou Luo
    • 1
    • 2
  • Jian-hua Zhao
    • 3
  • Jin-hai Tang
    • 2
  1. 1.The Fourth Clinical School of Nanjing Medical UniversityNanjingChina
  2. 2.Department of General Surgery, Nanjing Medical University Affiliated Cancer HospitalCancer Institute of Jiangsu ProvinceNanjingChina
  3. 3.Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer HospitalCancer Institute of Jiangsu ProvinceNanjingChina
  4. 4.Graduate SchoolXuzhou Medical CollegeXuzhouChina

Personalised recommendations