Advertisement

Tumor Biology

, Volume 35, Issue 3, pp 2591–2598 | Cite as

MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells

  • Enders K. O. Ng
  • Rufina Li
  • Vivian Y. Shin
  • Jennifer M. Siu
  • Edmond S. K. Ma
  • Ava KwongEmail author
Research Article

Abstract

MicroRNAs (miRNAs) are small non-protein-coding RNAs that regulate expression of a wide variety of genes including those involved in cancer development. Here, we investigate the role of miR-143 in breast cancer. In this study, we showed that miR-143 was frequently downregulated in 80 % of breast carcinoma tissues compared to their adjacent noncancerous tissues. Ectopic expression of miR-143 inhibited proliferation and soft agar colony formation of breast cancer cells and also downregulated DNA methyltransferase 3A (DNMT3A) expression on both mRNA and protein levels. Restoration of miR-143 expression in breast cancer cells reduces PTEN hypermethylation and increases TNFRSF10C methylation. DNMT3A was demonstrated to be a direct target of miR-143 by luciferase reporter assay. Furthermore, miR-143 expression was observed to be inversely correlated with DNMT3A mRNA and protein expression in breast cancer tissues. Our findings suggest that miR-143 regulates DNMT3A in breast cancer cells. These findings elucidated a tumor-suppressive role of miR-143 in epigenetic aberration of breast cancer, providing a potential development of miRNA-based treatment for breast cancer.

Keywords

miR-143 DNMT3A Breast cancer Tumor suppressor PTEN 

Abbreviations

miRNA

microRNA

DNMT

DNA methyltransferase

qRT-PCR

Quantitative reverse transcription–polymerase chain reaction

3′UTR

3′ Untranslated region

MTT

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

Notes

Conflicts of interest

None

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Duffy MJ. Ca 15-3 and related mucins as circulating markers in breast cancer. Ann Clin Biochem. 1999;36:579–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.PubMedCrossRefGoogle Scholar
  4. 4.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793–801.PubMedCrossRefGoogle Scholar
  7. 7.
    Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299:425–36.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8:R214.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    van't Veer LJ, Dai HY, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.CrossRefGoogle Scholar
  10. 10.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li JJ, et al. Microrna-143 targets DNA methyltransferases 3a in colorectal cancer. Br J Cancer. 2009;101:699–706.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Lin TX, Dong W, Huang J, Pan Q, Fan X, Zhang C, et al. MicroRNA-143 as a tumor suppressor for bladder cancer. J Urol. 2009;181:1372–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Gao Q, Steine EJ, Barrasa MI, Hockemeyer D, Pawlak M, Fu D, et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci U S A. 2011;108:18061–6.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Maehama T, Dixon JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 1999;9:125–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Bose S, Crane A, Hibshoosh H, Mansukhani M, Sandweis L, Parsons R. Reduced expression of PTEN correlates with breast cancer progression. Hum Pathol. 2002;33:405–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Phuong NT, Kim SK, Lim SC, Kim HS, Kim TH, Lee KY, et al. Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat. 2011;130:73–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Ng EKO, Chong WWS, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105:13556–61.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28:1385–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, et al. MiR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One. 2009;4:e7542.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sandhu SK, Croce CM, Garzon R. Micro-RNA expression and function in lymphomas. Adv Hematol. 2011. doi: 10.1155/2011/347137.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999;27:2291–8.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002;22:480–91.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature. 1998;395:89–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol. 2005;2 Suppl 1:S4–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Baranwal S, Alahari SK. MiRNA control of tumor cell invasion and metastasis. Int J Cancer. 2010;126:1283–90.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4:127–50.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Rhei E, Kang L, Bogomolniy F, Federici MG, Borgen PI, Boyd J. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res. 1997;57:3657–9.PubMedGoogle Scholar
  32. 32.
    Khan S, Kumagai T, Vora J, Bose N, Sehgal I, Koeffler PH, et al. PTEN promoter is methylated in a proportion of invasive breast cancers. Int J Cancer. 2004;112:407–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Chik F, Szyf M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis. 2011;32:224–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2:420–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Tessema M, Yu YY, Stidley CA, Machida EO, Schuebel KE, Baylin SB, et al. Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers. Carcinogenesis. 2009;30:1132–8.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Cheng Y, Kim JW, Liu W, Dunn TA, Luo J, Loza MJ, et al. Genetic and epigenetic inactivation of TNFRSF10C in human prostate cancer. Prostate. 2009;69:327–35.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Shivapurkar N, Toyooka S, Toyooka KO, Reddy J, Miyajima K, Suzuki M, et al. Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer. 2004;109:786–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Cai HH, Sun YM, Miao Y, Gao WT, Peng Q, Yao J, et al. Aberrant methylation frequency of tnfrsf10c promoter in pancreatic cancer cell lines. Hepato-Biliary-Pancreat Dis Int. 2011;10:95–100.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Enders K. O. Ng
    • 1
  • Rufina Li
    • 1
  • Vivian Y. Shin
    • 1
  • Jennifer M. Siu
    • 1
  • Edmond S. K. Ma
    • 2
  • Ava Kwong
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of SurgeryThe University of Hong KongHong Kong SARHong Kong
  2. 2.Department of Molecular PathologyHong Kong Sanatorium and HospitalHong Kong SARHong Kong
  3. 3.The Hong Kong Hereditary Breast Cancer Family RegistryHong KongHong Kong
  4. 4.Chief of Breast Surgery DivisionThe University of Hong KongHong Kong SARHong Kong

Personalised recommendations