Tumor Biology

, Volume 35, Issue 3, pp 1727–1738 | Cite as

Embryonic stem cell-specific signature in cervical cancer

  • Jorge Organista-Nava
  • Yazmín Gómez-Gómez
  • Patricio GariglioEmail author
Review Article


The wide range of invasive and noninvasive lesion phenotypes associated with high-risk human papillomavirus (HR-HPV) infection in cervical cancer (CC) indicates that not only the virus but also specific cervical epithelial cells in the transformation zone (TZ), such as stem cells (SCs), play an important part in the development of cervical neoplasia. In this review, we focused in an expression signature that is specific to embryonic SCs and to poorly differentiated cervical malignant tumors and we hypothesize that this expression signature may play an important role to promote cell growth, survival, colony formation, lack of adhesion, as well as cell invasion and migration in CC.


Cancer stem cells Cervical cancer Human papillomavirus Squamous cell carcinoma Transcription factors ES cell markers in cervical cancer cells 



We thank Dr. Hector Mayani Viveros (Investigador de Facultad de Medicina-UNAM y del Centro Medico Nacional Siglo XXI-IMSS), Dra. Vilma Maldonado Lagunas (Investigador de Facultad de Medicina-UNAM y del INMEGEN), Dr. Rodolfo Ocádiz-Delgado, Elizabeth Alvarez-Rios (Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México) and Lic. Yunué Pliego Jiménez (Profesora de Lenguas Culturas del Centro de Enseñanza de Lenguas Extranjeras-UNAM [CELE-UNAM]) for helpful comments and critical reading of the manuscript.

Conflicts of interest



  1. 1.
    Wang X, Liu R, Ma B, Yang K, Tian J, Jiang L, Bai ZG, Hao XY, Wang J, Li J. High dose rate versus low dose rate intracavity brachytherapy for locally advanced uterine cervix cancer. Cochrane Database Syst Rev 2010;CD007563.Google Scholar
  2. 2.
    Hakim A, Lin P, Wilczynski S, Nguyen K, Lynes B, Wakabayashi M. Indications and efficacy of the human papillomavirus vaccine. Curr Treat Options in Oncol. 2010;8:393–401.Google Scholar
  3. 3.
    IARC GSmfMNiwefenmfbm, using a set of age-, sex and site-specific incidence mortality ratios obtained by the aggregation of recorded cancer registry data from Cuba, Costa Rica and Puerto Rico. For further details refer to and [Accesed September 15, 2010].
  4. 4.
    Eltahir HA, Elhassan AM, Ibrahim ME. Contribution of retinoblastoma LOH and the p53 Arg/Pro polymorphism to cervical cancer. Mole Med Rep. 2012;6:473–6.Google Scholar
  5. 5.
    Manavi M, Hudelist G, Fink-Retter A, Gschwandtler-Kaulich D, Pischinger K, Czerwenka K. Gene profiling in pap-cell smears of high-risk human papillomavirus-positive squamous cervical carcinoma. Gynecol Oncol. 2007;105:418–26.PubMedGoogle Scholar
  6. 6.
    Acevedo-Rocha CG, Munguía-Moreno JA, Ocádiz-Delgado R, Gariglio P. A transcriptome- and marker-based systemic analysis of cervical cancer. In Intech (ed) Topics on cervical cancer with an advocacy for prevention. Croacia, 2012, pp. 155–196.Google Scholar
  7. 7.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.PubMedGoogle Scholar
  8. 8.
    Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–99.PubMedGoogle Scholar
  9. 9.
    Stingl J, Caldas C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer. 2007;7:791–9.PubMedGoogle Scholar
  10. 10.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedGoogle Scholar
  11. 11.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.PubMedGoogle Scholar
  12. 12.
    Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;432:324–31.PubMedGoogle Scholar
  13. 13.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Assou S, Le Carrour T, Tondeur S, Ström S, Gabelle A, Marty S, et al. A meta analysis of human embryonic stem cells transcriptome integrated into a web based expression atlas. Stem Cells. 2007;25:961–73.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell. 2006;125:301–13.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-myc protein. Genes Dev. 2003;17:1115–29.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-myc in Burkitt's lymphoma cells. Proc Natl Acad Sci U S A. 2003;100:8164–9.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Shrihari TG. Cancer stem cells—therapeutic boon. J Cancer Sci Ther. 2011;3:197–200.Google Scholar
  20. 20.
    Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7:86–95.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Shenghui H, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 2009;25:377–406.Google Scholar
  22. 22.
    Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.PubMedGoogle Scholar
  23. 23.
    Marx J. Mutant stem cells may seed cancer. Science. 2003;301:1308–10.PubMedGoogle Scholar
  24. 24.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A. 2006;103:11154–9.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Friel AM, Sergent PA, Patnaude C, Szotek PP, Oliva E, Scadden DT, et al. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle. 2008;7:242–9.PubMedGoogle Scholar
  27. 27.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.PubMedGoogle Scholar
  28. 28.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedGoogle Scholar
  29. 29.
    Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 2007;67:4827–33.PubMedGoogle Scholar
  30. 30.
    Zhang S-L, Wang Y-S, Zhou T, Yu X-W, Wei Z-T, Li Y-L. Isolation and characterization of cancer stem cells from cervical cancer hela cells. Cytotechnology. 2012;64:477–84.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Feng D, Peng C, Li C, Zhou Y, Li M, Ling B, et al. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol Rep. 2009;22:1129–34.PubMedGoogle Scholar
  32. 32.
    Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci U S A. 2012;109:10516–21.PubMedCentralPubMedGoogle Scholar
  33. 33.
    López J, Ruíz G, Organista-Nava J, Gariglio P, García-Carrancá A. Human papillomavirus infections and cancer stem cells of tumors from the uterine cervix. Open Virol J. 2012;6:232–40.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Herfs M, Vargas S, Yamamoto Y, Howitt B, Nucci M, Hornick J, et al. A novel blueprint for "top down" differentiation defines the cervical squamocolumnar junction during development, reproductive life and neoplasia. J Pathol. 2013;229:460–8.PubMedGoogle Scholar
  35. 35.
    Martens JE, Arends J, Van Der Linden PJQ, De Boer BAG, Helmerhorst TJM. Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Res. 2004;24:771–6.PubMedGoogle Scholar
  36. 36.
    Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirie F, Rigby PWJ, et al. A pou-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature. 1990;345:686–92.PubMedGoogle Scholar
  37. 37.
    Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell. 1990;60:461–72.PubMedGoogle Scholar
  38. 38.
    Liu D, Zhou P, Zhang L, Wu G, Zheng Y, He F. Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A. Tumour Biol. 2011;32:941–50.PubMedGoogle Scholar
  39. 39.
    Pereira L, Yi F, Merrill BJ. Repression of nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol. 2006;26:7479–91.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007;17:42–9.PubMedGoogle Scholar
  41. 41.
    Ezeh UI, Turek PJ, Reijo RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer. 2005;104:2255–65.PubMedGoogle Scholar
  42. 42.
    Saiki Y, Ishimaru S, Mimori K, Takatsuno Y, Nagahara M, Ishii H, et al. Comprehensive analysis of the clinical significance of inducing pluripotent stemness-related gene expression in colorectal cancer cells. Ann Surg Oncol. 2009;16:2638–44.PubMedGoogle Scholar
  43. 43.
    Chiou S-H, Yu C-C, Huang C-Y, Lin S-C, Liu C-J, Tsai T-H, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 2008;14:4085–95.PubMedGoogle Scholar
  44. 44.
    Ye F, Zhou C, Cheng Q, Shen J, Chen H. Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed in malignant cervical epithelial cells. BMC Cancer. 2008;18:108–12.Google Scholar
  45. 45.
    Gu T-T, Liu S-Y, Zheng P-S. Cytoplasmic NANOG-positive stromal cells promote human cervical cancer progression. Am J Pathol. 2012;181:652–61.PubMedGoogle Scholar
  46. 46.
    Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–4.PubMedGoogle Scholar
  47. 47.
    Chew J-L, Loh Y-H, Zhang W, Chen X, Tam W-L, Yeap L-S, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol. 2005;25:6031–46.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Ji J, Zheng PS. Expression of Sox2 in human cervical carcinogenesis. Hum Pathol. 2010;41:1438–47.PubMedGoogle Scholar
  49. 49.
    Li Y, McClintick J, Zhong L, Edenberg HJ, Yoder MC, Chan RJ. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood. 2005;105:635–7.PubMedGoogle Scholar
  50. 50.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedGoogle Scholar
  51. 51.
    Foster KW, Liu Z, Nail CD, Li X, Fitzgerald TJ, Bailey SK, et al. Induction of Klf4 in basal keratinocytes blocks the proliferation–differentiation switch and initiates squamous epithelial dysplasia. Oncogene. 2005;24:1491–500.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Tai S-K, Yang M-H, Chang S-Y, Chang Y-C, Li W-Y, Tsai T-L, et al. Persistent Kruppel-like factor 4 expression predicts progression and poor prognosis of head and neck squamous cell carcinoma. Cancer Sci. 2011;102:895–902.PubMedGoogle Scholar
  53. 53.
    Dang DT, Chen X, Feng J, Torbenson M, Dang LH, Yang VW. Overexpression of Krüppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene. 2003;22:3424–30.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Yang Y, Goldstein BG, Chao H-H, Katz J. Klf4 and Klf5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. Cancer Biol Ther. 2005;4:1216–21.PubMedGoogle Scholar
  55. 55.
    Wei D, Gong W, Kanai M, Schlunk C, Wang L, Yao JC, et al. Drastic down-regulation of Krüppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res. 2005;65:2746–54.PubMedGoogle Scholar
  56. 56.
    Zammarchi F, Morelli M, Menicagli M, Di Cristofano C, Zavaglia K, Paolucci A, et al. Klf4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am J Pathol. 2011;178:361–72.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Hu W, Hofstetter WL, Li H, Zhou Y, He Y, Pataer A, et al. Putative tumor-suppressive function of Krüppel-like factor 4 in primary lung carcinoma. Clin Cancer Res. 2009;15:5688–95.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Yang WT, Zheng PS. Krüppel-like factor 4 functions as a tumor suppressor in cervical carcinoma. Cancer. 2012;118:3691–702.PubMedGoogle Scholar
  59. 59.
    Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE, et al. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci. 2007;104:10494–9.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Alkema M, Wiegant J, Raap AK, Bems A, van Lohuizen M. Characterization and chromosomal localization of the human proto-oncogene BMI-1. Hum Mol Genet. 1993;2:1597–603.PubMedGoogle Scholar
  61. 61.
    Tong Y-Q, Liu B, Zheng H-Y, He Y-J, Gu J, Li F, et al. BMI-1 autoantibody as a new potential biomarker for cervical carcinoma. PLoS One. 2011;6:e27804.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Vrzalikova K, Skarda J, Ehrmann J, Murray PG, Fridman E, Kopolovic J, et al. Prognostic value of bBi-1 oncoprotein expression in NSCLC patients: a tissue microarray study. J Cancer Res Clin Oncol. 2008;134:1037–42.PubMedGoogle Scholar
  63. 63.
    Tong Y-Q, Liu B, Huang J, Liu Y, Guo F-J, Zhou G-H, et al. BMI-1 autoantibody in serum as a new potential biomarker of nasopharyngeal carcinoma. Cancer Biol Ther. 2008;7:340–4.PubMedGoogle Scholar
  64. 64.
    Silva J, García V, García JM, Peña C, Domínguez G, Díaz R, et al. Circulating Bmi-1 mRNA as a possible prognostic factor for advanced breast cancer patients. Breast Cancer Res. 2007;9:R55.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Yu J, Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G, et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res. 2007;67:10657–63.PubMedGoogle Scholar
  66. 66.
    Yong-Qing T, Bei L, Hong-Yun Z, Yu-Juan H, Jian G, Feng L, et al. Overexpression of BMI-1 is associated with poor prognosis in cervical cancer. Asia-Pac J Clin Oncol. 2012;8:e55–62.Google Scholar
  67. 67.
    Xin Z, Chuan-Xin W, Cheng-bao Z, Jian Z, Shi-feng K, Lu-tao D, et al. Overexpression of Bmi-1 in uterine cervical cancer: correlation with clinicopathology and prognosis. Int J Gynecol Cancer. 2010;20:1597–603.Google Scholar
  68. 68.
    Okuda A, Fukushima A, Nishimoto M, Orimo A, Yamagishi T, Nabeshima Y, et al. UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J. 1998;17:2019–32.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct. 2001;26:137–48.PubMedGoogle Scholar
  70. 70.
    Wang P, Li J, Allan RW, Guo CC, Peng Y, Cao D. Expression of UTF1 in primary and metastatic testicular germ cell tumors. Am J Clin Pathol. 2010;134:604–12.PubMedGoogle Scholar
  71. 71.
    Guenin S, Mouallif M, Deplus R, Lampe X, Krusy N, Calonne E, et al. Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLoS One. 2012;7:e42704.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Wu X-L, Zheng P-S. Undifferentiated embryonic cell transcription factor-1 (UTF1) inhibits the growth of cervical cancer cells by transactivating p27Kip1. Carcinogenesis. 2013;34:1660–8.PubMedGoogle Scholar
  73. 73.
    Pepe AE, Xiao Q, Zampetaki A, Zhang Z, Kobayashi A, Hu Y, et al. Crucial role of nrf3 in smooth muscle cell differentiation from stem cells. Circ Res. 2005;106:870–9.Google Scholar
  74. 74.
    Rhee DK, Park SH, Jang YK. Molecular signatures associated with transformation and progression to breast cancer in the isogenic MCF10 model. Genomics. 2008;92:419–28.PubMedGoogle Scholar
  75. 75.
    Almstrup K, Leffers H, Lothe RA, Skakkebaek NE, Sonne SB, Nielsen JE, et al. Improved gene expression signature of testicular carcinoma in situ. Int J Androl. 2007;30:292–303.PubMedGoogle Scholar
  76. 76.
    Perez-Plasencia C, Vazquez-Ortiz G, Lopez-Romero R, Piña-Sanchez P, Moreno J, Salcedo M. Genome wide expression analysis in HPV16 cervical cancer: identification of altered metabolic pathways. Infect Agent Cancer. 2007;2:16–26.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Darnell JE. Stats and gene regulation. Science. 1997;277:1630–5.PubMedGoogle Scholar
  78. 78.
    Schaefer TS, Sanders LK, Nathans D. Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci U S A. 1995;92:9097–101.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–21.PubMedGoogle Scholar
  80. 80.
    Shen Y, Schlessinger K, Zhu X, Meffre E, Quimby F, Levy DE, et al. Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. Mol Cell Biol. 2004;24:407–19.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Raz R, Lee CK, Cannizzaro LA, d'Eustachio P, Levy DE. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci U S A. 1999;96:2846–51.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of stat3. Genes Dev. 1998;12:2048–60.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 1999;18:4261–9.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Huang M, Page C, Reynolds RK, Lin J. Constitutive activation of stat 3 oncogene product in human ovarian carcinoma cells. Gynecol Oncol. 2000;79:67–73.PubMedGoogle Scholar
  85. 85.
    Bowman T, Garcia R, Turkson J, Jove R. Stats in oncogenesis. Oncogene. 2000;19:2474–88.PubMedGoogle Scholar
  86. 86.
    Sobti RC, Singh N, Hussain S, Suri V, Bharti AC, Das BC. Overexpression of STAT3 in HPV-mediated cervical cancer in a north Indian population. Mol Cell Biochem. 2009;330:193–9.PubMedGoogle Scholar
  87. 87.
    Chen CL, Hsieh FC, Lieblein JC, Brown J, Chan C, Wallace JA, et al. Stat3 activation in human endometrial and cervical cancers. Br J Cancer. 2007;96:591–9.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Shukla S, Shishodia G, Mahata S, Hedau S, Pandey A, Bhambhani S, et al. Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Mol Cancer. 2010;9:282–301.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Denslow SA, Wade PA. The human Mi-2/NuRD complex and gene regulation. Oncogene. 2007;26:5433–8.PubMedGoogle Scholar
  90. 90.
    Manavathi B, Singh K, Kumar R. MTA family of coregulators in nuclear receptor biology and pathology. Nucl Recept Signal. 2007;5:E010.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Liang J, Wan M, Zhang Y, Gu P, Xin H, Jung SY, et al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol. 2008;10:731–9.PubMedGoogle Scholar
  92. 92.
    Mahoney MG, Simpson A, Jost M, Noe M, Kari C, Pepe D, et al. Metastasis-associated protein (MTA) 1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene. 2002;21:2161–70.PubMedGoogle Scholar
  93. 93.
    Jang K-S, Paik SS, Chung H, Oh Y-H, Kong G. MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Sci. 2006;97:374–9.PubMedGoogle Scholar
  94. 94.
    Toh Y, Ohga T, Endo K, Adachi E, Kusumoto H, Haraguchi M, et al. Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int J Cancer. 2004;110:362–7.PubMedGoogle Scholar
  95. 95.
    Yi S, Guangqi H, Guoli H. The association of the expression of MTA1, nm23H1 with the invasion, metastasis of ovarian carcinoma. Chin Med Sci J. 2003;18:87–92.PubMedGoogle Scholar
  96. 96.
    Han XY, Qian HL, Yang JJ, Zhang XY, Fu M, Liang X, et al. Relationship between MTA1 expression and invasive and metastatic ability of cervical cancer cell. Zhonghua Fu Chan Ke Za Zhi. 2011;46:678–83.PubMedGoogle Scholar
  97. 97.
    Choi JK, Jang SK, Lee DH, Kim KH, Na YJ, Choi KU, et al. Analysis of mta1 gene expression for uterine cervical cancer by cDNA microarray and tissue array. Korean J Obstet Gynecol. 2005;48:2607–17.Google Scholar
  98. 98.
    Kappes F, Burger K, Baack M, Fackelmayer FO, Gruss C. Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem. 2001;276:26317–23.PubMedGoogle Scholar
  99. 99.
    Wu Q, Li Z, Lin H, Han L, Liu S, Lin Z. DEK overexpression in uterine cervical cancers. Pathol Int. 2008;58:378–82.PubMedGoogle Scholar
  100. 100.
    Wise-Draper TM, Allen HV, Thobe MN, Jones EE, Habash KB, Munger K, et al. The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol. 2005;79:14309–17.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Jung J, Mysliwiec MR, Lee Y. Roles of jumonji in mouse embryonic development. Dev Dyn. 2005;232:21–32.PubMedGoogle Scholar
  102. 102.
    Berge-Lefranc JL, Jay P, Massacrier A, Cau P, Mattei MG, Bauer S, et al. Characterization of the human jumonji gene. Hum Mol Genet. 1996;5:1637–41.PubMedGoogle Scholar
  103. 103.
    Takeuchi T, Watanabe Y, Takano-Shimizu T, Kondo S. Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn. 2006;235:2449–59.PubMedGoogle Scholar
  104. 104.
    Pedersen MT, Helin K. Histone demethylases in development and disease. Trends Cell Biol. 2010;20:662–71.PubMedGoogle Scholar
  105. 105.
    Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7:715–27.PubMedGoogle Scholar
  106. 106.
    Toyoda M, Shirato H, Nakajima K, Kojima M, Takahashi M, Kubota M, et al. Jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression. Dev Cell. 2003;5:85–97.PubMedGoogle Scholar
  107. 107.
    Kitajima K, Kojima M, Kondo S, Takeuchi T. A role of jumonji gene in proliferation but not differentiation of megakaryocyte lineage cells. Exp Hematol. 2001;29:507–14.PubMedGoogle Scholar
  108. 108.
    Toyoda M, Kojima M, Takeuchi T. Jumonji is a nuclear protein that participates in the negative regulation of cell growth. Biochem Biophys Res Commun. 2000;274:332–6.PubMedGoogle Scholar
  109. 109.
    Takahashi M, Kojima M, Nakajima K, Suzuki-Migishima R, Takeuchi T. Functions of a jumonji–cyclin D1 pathway in the coordination of cell cycle exit and migration during neurogenesis in the mouse hindbrain. Dev Biol. 2007;303:549–60.PubMedGoogle Scholar
  110. 110.
    Takeuchi T, Kojima M, Nakajima K, Kondo S. Jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mech Dev. 1999;86:29–38.PubMedGoogle Scholar
  111. 111.
    Anzai H, Kamiya A, Shirato H, Takeuchi T, Miyajima A. Impaired differentiation of fetal hepatocytes in homozygous jumonji mice. Mech Dev. 2003;120:791–800.PubMedGoogle Scholar
  112. 112.
    Kim J, Chu J, Shen X, Wang J, Orkin SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 2008;132:1049–61.PubMedGoogle Scholar
  113. 113.
    Zhou Q, Chipperfield H, Melton DA, Wong WH. A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104:16438–43.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Sun Y, Li H, Liu Y, Mattson MP, Rao MS, Zhan M. Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation. PLoS One. 2008;3:e3406.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jorgensen HF, et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA polymerase II to developmental regulators. Nat Cell Biol. 2010;12:618–24.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Pasini D, Cloos PAC, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, et al. Jarid2 regulates binding of the polycomb repressive complex 2 to target genes in ES cells. Nature. 2010;464:306–10.PubMedGoogle Scholar
  117. 117.
    Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 2010;24:368.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Kim T, Chen J, Sadoshima J, Lee Y. Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Mol Cell Biol. 2004;24:10151–60.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Jung J, Kim T, Lyons GE, Kim HRC, Lee Y. Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem. 2005;280:30916–23.PubMedGoogle Scholar
  120. 120.
    Kim T-g, Jung J, Mysliwiec MR, Kang S, Lee Y. Jumonji represses alpha-cardiac myosin heavy chain expression via inhibiting MEF2 activity. Biochem Biophys Res Commun. 2005;329:544–53.PubMedGoogle Scholar
  121. 121.
    Mysliwiec MR, Kim T, Lee Y. Characterization of zinc finger protein 496 that interacts with Jumonji/Jarid2. FEBS Lett. 2007;581:2633–40.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Gariglio M, Azzimonti B, Pagano M, Palestro G, de Andrea M, Valente G, et al. Immunohistochemical expression analysis of the human interferon-inducible gene IFI16, a member of the HIN200 family, not restricted to hematopoietic cells. J Interf Cytokine Res. 2002;22:815–21.Google Scholar
  123. 123.
    Wei W, Clarke CJP, Somers GR, Cresswell KS, Loveland KA, Trapani JA, et al. Expression of IFI 16 in epithelial cells and lymphoid tissues. Histochem Cell Biol. 2003;119:45–54.PubMedGoogle Scholar
  124. 124.
    Raffaella R, Gioia D, De Andrea M, Cappello P, Giovarelli M, Marconi P, et al. The interferon-inducible IFI16 gene inhibits tube morphogenesis and proliferation of primary, but not HPV16 E6/E7-immortalized human endothelial cells. Exp Cell Res. 2004;293:331–45.PubMedGoogle Scholar
  125. 125.
    Azzimonti B, Pagano M, Mondini M, De Andrea M, Valente G, Monga G, et al. Altered patterns of the interferon-inducible gene IFI16 expression in head and neck squamous cell carcinoma: immunohistochemical study including correlation with retinoblastoma protein, human papillomavirus infection and proliferation index. Histopathology. 2004;45:560–72.PubMedGoogle Scholar
  126. 126.
    Dawson MJ, Elwood NJ, Johnstone RW, Trapani JA. The IFN-inducible nucleoprotein IFI 16 is expressed in cells of the monocyte lineage, but is rapidly and markedly down-regulated in other myeloid precursor populations. J Leukoc Biol. 1998;64:546–54.PubMedGoogle Scholar
  127. 127.
    Imadome K, Iwakawa M, Nakawatari M, Fujita H, Kato S, Ohno T, et al. Subtypes of cervical adenosquamous carcinomas classified by EpCAM expression related to radiosensitivity. Cancer Biol Ther. 2010;10:1019–26.PubMedGoogle Scholar
  128. 128.
    Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, et al. ETV1 is a lineage-specific survival factor in gist and cooperates with KIT in oncogenesis. Nature. 2010;467:849–53.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci U S A. 2009;106:12465–70.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Li P, Maines-Bandiera S, Kuo W-L, Guan Y, Sun Y, Hills M, et al. Multiple roles of the candidate oncogene ZNF217 in ovarian epithelial neoplastic progression. Int J Cancer. 2007;120:1863–73.PubMedGoogle Scholar
  131. 131.
    Krig SR, Miller JK, Frietze S, Beckett LA, Neve RM, Farnham PJ, et al. ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells. Oncogene. 2010;29:5500–10.PubMedGoogle Scholar
  132. 132.
    Nonet GH, Stampfer MR, Chin K, Gray JW, Collins CC, Yaswen P. The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells. Cancer Res. 2001;61:1250–4.PubMedGoogle Scholar
  133. 133.
    Quinlan KGR, Verger A, Yaswen P, Crossley M. Amplification of zinc finger gene 217 (ZNF217) and cancer: when good fingers go bad. Biochim Biophys Acta. 2007;1775:333–40.PubMedGoogle Scholar
  134. 134.
    Krig SR, Jin VX, Bieda MC, O'Geen H, Yaswen P, Green R, et al. Identification of genes directly regulated by the oncogene ZNF217 using chromatin immunoprecipitation (ChIP)-chip assays. J Biol Chem. 2007;282:9703–12.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Zhu X, Lv J, Yu L, Zhu X, Wu J, Zou S, et al. Proteomic identification of differentially-expressed proteins in squamous cervical cancer. Gynecol Oncol. 2009;112:248–56.PubMedGoogle Scholar
  136. 136.
    López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer. 2012;12:48.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Ouhtit A, Abd Elmageed ZY, Abdraboh ME, Lioe TF, Raj MHG. In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. Am J Pathol. 2007;171:2033–9.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Chute JP. Stem cell homing. Curr Opin Hematol. 2006;13:399–406.PubMedGoogle Scholar
  139. 139.
    Qian H, Georges-Labouesse E, Nyström A, Domogatskaya A, Tryggvason K, Jacobsen SEW, et al. Distinct roles of integrins alpha6 and alpha4 in homing of fetal liver hematopoietic stem and progenitor cells. Blood. 2007;110:2399–407.PubMedGoogle Scholar
  140. 140.
    Yao T, Chen Q, Zhang B, Zhou H, Lin Z. The expression of ALDH1 in cervical carcinoma. Med Sci Monit. 2011;17:HY21–6.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Visus C, Ito D, Amoscato A, Maciejewska-Franczak M, Abdelsalem A, Dhir R, et al. Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Res. 2007;67:10538–45.PubMedGoogle Scholar
  142. 142.
    Jeong Seo E, Jung Kim H, Jae Lee C, Tae Kang H, Seong Hwang E. The role of HPV oncoproteins and cellular factors in maintenance of hTERT expression in cervical carcinoma cells. Gynecol Oncol. 2004;94:40–7.PubMedGoogle Scholar
  143. 143.
    Wong C-W, Hou P-S, Tseng S-F, Chien C-L, Wu K-J, Chen H-F, et al. Krüppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells. 2010;28:1510–7.PubMedGoogle Scholar
  144. 144.
    Luczak MW, Roszak A, Pawlik P, Kedzia H, Kedzia W, Malkowska-Walczak B, et al. Transcriptional analysis of CXCR4, DNMT3A, DNMT3B and DNMT1 gene expression in primary advanced uterine cervical carcinoma. Int J Oncol. 2012;40:860–6.PubMedGoogle Scholar
  145. 145.
    Hata K, Okano M, Lei H, Li E. Dnmt3l cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129:1983–93.PubMedGoogle Scholar
  146. 146.
    Meyer N, Penn LZ. Reflecting on 25 years with myc. Nat Rev Cancer. 2008;8:976–90.PubMedGoogle Scholar
  147. 147.
    Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 2009;41:843–8.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Qiu C, Ma Y, Wang J, Peng S, Huang Y. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res. 2010;38:1240–8.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Ertoy D, Ayhan A, Saraç E, Karaaǧaoǧlu E, Yasui W, Tahara E, et al. Clinicopathological implication of cripto expression in early stage invasive cervical carcinomas. Eur J Cancer. 2000;36:1002–7.PubMedGoogle Scholar
  150. 150.
    Gray PC, Shani G, Aung K, Kelber J, Vale W. Cripto binds transforming growth factor β (TGF-β) and inhibits TGF-β signaling. Mol Cell Biol. 2006;26:9268–78.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.PubMedGoogle Scholar
  152. 152.
    Blagosklonny MV. Why therapeutic response may not prolong the life of a cancer patient: selection for oncogenic resistance. Cell Cycle. 2005;4:1693–8.PubMedGoogle Scholar
  153. 153.
    Frosina G. DNA repair in normal and cancer stem cells, with special reference to the central nervous system. Curr Med Chem. 2009;16:854–66.PubMedGoogle Scholar
  154. 154.
    Wang Y. Effects of salinomycin on cancer stem cell in human lung adenocarcinoma a549 cells. Med Chem. 2011;7:106–11.PubMedGoogle Scholar
  155. 155.
    Kakarala M, Brenner D, Korkaya H, Cheng C, Tazi K, Ginestier C, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 2011;122:777–85.Google Scholar
  156. 156.
    Rausch V, Liu L, Kallifatidis G, Baumann B, Mattern J, Gladkich J, et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res. 2010;70:5004–13.PubMedGoogle Scholar
  157. 157.
    So JY, Lee HJ, Smolarek AK, Paul S, Wang C-X, Maehr H, et al. A novel gemini vitamin D analog represses the expression of a stem cell marker cd44 in breast cancer. Mol Pharmacol. 2010;79:360–7.PubMedGoogle Scholar
  158. 158.
    Joseph I, Tressler R, Bassett E, Harley C, Buseman CM, Pattamatta P, et al. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines. Cancer Res. 2010;70:9494–504.PubMedGoogle Scholar
  159. 159.
    Wang L, Guo H, Yang L, Dong L, Lin C, Zhang J, et al. Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-κB activity and apoptosis induction. Mol Cell Biochem. 2013;379:7–18.PubMedGoogle Scholar
  160. 160.
    Liao T, Kaufmann AM, Qian X, Sangvatanakul V, Chen C, Kube T, et al. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines. J Cancer Res Clin Oncol. 2013;139:159–70.PubMedGoogle Scholar
  161. 161.
    Gu W, Yeo E, McMillan N, Yu C. Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther. 2011;18:897–905.PubMedGoogle Scholar
  162. 162.
    Cai N, Wang Y-D, Zheng P-S. The microrna-302–367 cluster suppresses the proliferation of cervical carcinoma cells through the novel target akt1. RNA. 2013;19:85–95.PubMedCentralPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Jorge Organista-Nava
    • 1
    • 2
  • Yazmín Gómez-Gómez
    • 1
    • 2
  • Patricio Gariglio
    • 2
    Email author
  1. 1.Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)MéxicoMéxico
  2. 2.Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados del IPNMéxicoMéxico

Personalised recommendations