Advertisement

Tumor Biology

, Volume 35, Issue 2, pp 1065–1073 | Cite as

Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer

  • Ming Sun
  • Rui Xia
  • Feiyan Jin
  • Tongpeng Xu
  • Zhijun Liu
  • Wei De
  • Xianghua Liu
Research Article

Abstract

Long noncoding RNAs (lncRNAs) have emerged recently as major players in governing fundamental biological processes, and many of which are altered in expression and likely to have a functional role in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA associated with various human cancers. However, its biological role and clinical significance in gastric cancer development and progression are unknown. In this study, to investigate the lncRNA MEG3 expression in gastric cancer, quantitative reverse-transcription polymerase chain reaction was conducted. We found that MEG3 levels were markedly decreased in gastric cancer tissues compared with adjacent normal tissues. Its expression level was significantly correlated with TNM stages, depth of invasion, and tumor size. Moreover, patients with low levels of MEG3 expression had a relatively poor prognosis. Furthermore, knockdown of MEG3 expression by siRNA could promote cell proliferation, while ectopic expression of MEG3 inhibited cell proliferation, promoted cell apoptosis, and modulated p53 expression in gastric cancer cell lines. By 5-aza-CdR treatment, we also observed that MEG3 expression can be modulated by DNA methylation. Our findings present that MEG3 downexpression can be identified as a poor prognostic biomarker in gastric cancer and regulate cell proliferation and apoptosis in vitro.

Keywords

Gastric cancer Long noncoding RNA MEG3 Poor prognosis Proliferation 

Notes

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China (no. 81301824, no. 81070620).

Conflicts of interest

None

References

  1. 1.
    Herszenyi L, Tulassay Z. Epidemiology of gastrointestinal and liver tumors. Eur Rev Med Pharmacol Sci. 2010;14(4):249–58.PubMedGoogle Scholar
  2. 2.
    Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F, Van Cutsem E. Gastric cancer. Crit Rev Oncol/Hematol. 2009;71(2):127–64. doi: 10.1016/j.critrevonc.2009.01.004.CrossRefGoogle Scholar
  3. 3.
    Vogiatzi P, Vindigni C, Roviello F, Renieri A, Giordano A. Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol. 2007;211(2):287–95. doi: 10.1002/jcp.20982.PubMedCrossRefGoogle Scholar
  4. 4.
    Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12(3):354–62.PubMedGoogle Scholar
  5. 5.
    Pinheiro H, Bordeira-Carrico R, Seixas S, Carvalho J, Senz J, Oliveira P, et al. Allele-specific CDH1 downregulation and hereditary diffuse gastric cancer. Hum Mol Genet. 2010;19(5):943–52. doi: 10.1093/hmg/ddp537.PubMedCrossRefGoogle Scholar
  6. 6.
    Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. doi: 10.1038/nature05874.PubMedCrossRefGoogle Scholar
  7. 7.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. doi: 10.1038/nature07672.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41. doi: 10.1016/j.cell.2009.02.006.PubMedCrossRefGoogle Scholar
  9. 9.
    Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81. doi: 10.1016/j.cell.2011.03.014.PubMedCrossRefGoogle Scholar
  10. 10.
    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504. doi: 10.1101/gad.1800909.PubMedCrossRefGoogle Scholar
  11. 11.
    Louro R, Smirnova AS, Verjovski-Almeida S. Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics. 2009;93(4):291–8. doi: 10.1016/j.ygeno.2008.11.009.PubMedCrossRefGoogle Scholar
  12. 12.
    Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7. doi: 10.1038/ng.710.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9. doi: 10.1038/nrg2521.PubMedCrossRefGoogle Scholar
  14. 14.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G et al. The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2012. doi: 10.1158/0008-5472.CAN-12-2850.
  15. 15.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi: 10.1038/nature08975.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38(16):5366–83. doi: 10.1093/nar/gkq285.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer. 2011;129(4):773–9. doi: 10.1002/ijc.26052.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol. 2012;48(3):R45–53. doi: 10.1530/JME-12-0008.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113(6):1868–74. doi: 10.1002/jcb.24055.PubMedCrossRefGoogle Scholar
  20. 20.
    Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, et al. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS One. 2012;7(11):e49462. doi: 10.1371/journal.pone.0049462.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst. 2013;9(3):407–11. doi: 10.1039/c2mb25386k.PubMedCrossRefGoogle Scholar
  22. 22.
    Balik V, Srovnal J, Sulla I, Kalita O, Foltanova T, Vaverka M, et al. MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neurooncol. 2013;112(1):1–8. doi: 10.1007/s11060-012-1038-6.PubMedCrossRefGoogle Scholar
  23. 23.
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19. doi: 10.1016/j.cell.2010.06.040.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–42. doi: 10.1074/jbc.M702029200.PubMedCrossRefGoogle Scholar
  25. 25.
    Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482(7385):339–46. doi: 10.1038/nature10887.PubMedCrossRefGoogle Scholar
  26. 26.
    Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72. doi: 10.1073/pnas.0904715106.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Wu HA, Bernstein E. Partners in imprinting: noncoding RNA and polycomb group proteins. Dev Cell. 2008;15(5):637–8. doi: 10.1016/j.devcel.2008.10.008.PubMedCrossRefGoogle Scholar
  28. 28.
    Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30(16):1956–62. doi: 10.1038/onc.2010.568.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 2011;39(6):2119–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72(5):1126–36. doi: 10.1158/0008-5472.CAN-11-1803.PubMedCrossRefGoogle Scholar
  31. 31.
    Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6. doi: 10.1158/0008-5472.CAN-11-1021.PubMedCrossRefGoogle Scholar
  32. 32.
    Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, et al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 2011;71(11): 3852–62.Google Scholar
  33. 33.
    Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31. doi: 10.1016/j.cell.2009.04.037.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Ming Sun
    • 1
  • Rui Xia
    • 1
  • Feiyan Jin
    • 1
  • Tongpeng Xu
    • 2
  • Zhijun Liu
    • 1
  • Wei De
    • 1
  • Xianghua Liu
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Oncology, First Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations