Tumor Biology

, Volume 34, Issue 6, pp 4081–4087 | Cite as

The protein p17 signaling pathways in cancer

Research Article

Abstract

P17 is a novel neuronal protein expressed under physiological conditions only at very low levels in other tissues. Accumulating data indicate its crucial involvement in tumorigenic effects. Using molecular, cellular, and biocomputational methods, the current study unraveled p17 mode of action. Data indicate that mitochondria-associated p17 interacts with the proteins TMEM115, YPEL3, ERP44, CDK5RAP, and NNAT. Moreover, p17 drives the cell cycle into the G0/G1 phase and enhances survival of proliferating cells. Interference with p17 activities thus might become a novel option to influence also the tumor suppressor protein p53 signaling pathways for the treatment of tumors.

Keywords

Cancer Oncology FAM72A Ugene p53 

References

  1. 1.
    Nehar S, Mishra M, Heese K. Identification and characterisation of the novel amyloid-beta peptide-induced protein p17. FEBS Lett. 2009;583(19):3247–53. doi:10.1016/j.febslet.2009.09.018.PubMedCrossRefGoogle Scholar
  2. 2.
    Guo C, Zhang X, Fink SP, Platzer P, Wilson K, Willson JK, et al. Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res. 2008;68(15):6118–26. doi:10.1158/0008-5472.CAN-08-1259.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang LT, Lin CS, Chai CY, Liu KY, Chen JY, Hsu SH. Functional interaction of Ugene and EBV infection mediates tumorigenic effects. Oncogene. 2011;30(26):2921–32. doi:10.1038/onc.2011.16.PubMedCrossRefGoogle Scholar
  4. 4.
    Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, et al. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991;266(24):15771–81.PubMedGoogle Scholar
  5. 5.
    Heese K, Yamada T, Akatsu H, Yamamoto T, Kosaka K, Nagai Y, et al. Characterizing the new transcription regulator protein p60TRP. J Cell Biochem. 2004;91(5):1030–42. doi:10.1002/jcb.20010.PubMedCrossRefGoogle Scholar
  6. 6.
    Mishra M, Akatsu H, Heese K. The novel protein MANI modulates neurogenesis and neurite-cone growth. J Cell Mol Med. 2011;15(8):1713–25. doi:10.1111/j.1582-4934.2010.01134.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Mishra M, Inoue N, Heese K. Characterizing the novel protein p33MONOX. Mol Cell Biochem. 2011;350(1–2):127–34. doi:10.1007/s11010-010-0690-4.PubMedCrossRefGoogle Scholar
  8. 8.
    Mishra M, Heese K. P60TRP interferes with the GPCR/secretase pathway to mediate neuronal survival and synaptogenesis. J Cell Mol Med. 2011;15(11):2462–77. doi:10.1111/j.1582-4934.2010.01248.x.PubMedCrossRefGoogle Scholar
  9. 9.
    Islam O, Gong X, Rose-John S, Heese K. Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell. 2009;20(1):188–99. doi:10.1091/mbc.E08-05-0463.PubMedCrossRefGoogle Scholar
  10. 10.
    Yokota T, Mishra M, Akatsu H, Tani Y, Miyauchi T, Yamamoto T, et al. Brain site-specific gene expression analysis in Alzheimer's disease patients. Eur J Clin Investig. 2006;36(11):820–30. doi:10.1111/j.1365-2362.2006.01722.x.CrossRefGoogle Scholar
  11. 11.
    Heese K, Nagai Y, Sawada T. Induction of rat L-phosphoserine phosphatase by amyloid-beta (1-42) is inhibited by interleukin-11. Neurosci Lett. 2000;288(1):37–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, Berberich SJ. YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res. 2010;70(9):3566–75. doi:10.1158/0008-5472.CAN-09-3219.PubMedCrossRefGoogle Scholar
  13. 13.
    Berberich SJ, Todd A, Tuttle R. Why YPEL3 represents a novel tumor suppressor. Front Biosci. 2011;16:1746–51.CrossRefGoogle Scholar
  14. 14.
    Tuttle R, Simon M, Hitch DC, Maiorano JN, Hellan M, Ouellette J, et al. Senescence-associated gene YPEL3 is downregulated in human colon tumors. Ann Surg Oncol. 2011;18(6):1791–6. doi:10.1245/s10434-011-1558-x.PubMedCrossRefGoogle Scholar
  15. 15.
    Anelli T, Alessio M, Bachi A, Bergamelli L, Bertoli G, Camerini S, et al. Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J. 2003;22(19):5015–22. doi:10.1093/emboj/cdg491.PubMedCrossRefGoogle Scholar
  16. 16.
    Simmen T, Lynes EM, Gesson K, Thomas G. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). Biochim Biophys Acta. 2010;1798(8):1465–73. doi:10.1016/j.bbamem.2010.04.009.PubMedCrossRefGoogle Scholar
  17. 17.
    Mak GW, Chan MM, Leong VY, Lee JM, Yau TO, Ng IO, et al. Overexpression of a novel activator of PAK4, the CDK5 kinase-associated protein CDK5RAP3, promotes hepatocellular carcinoma metastasis. Cancer Res. 2011;71(8):2949–58. doi:10.1158/0008-5472.CAN-10-4046.PubMedCrossRefGoogle Scholar
  18. 18.
    Oyang EL, Davidson BC, Lee W, Poon MM. Functional characterization of the dendritically localized mRNA neuronatin in hippocampal neurons. PLoS One. 2011;6(9):e24879. doi:10.1371/journal.pone.0024879.PubMedCrossRefGoogle Scholar
  19. 19.
    Akbari M, Otterlei M, Pena-Diaz J, Krokan HE. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress. Neuroscience. 2007;145(4):1201–12. doi:10.1016/j.neuroscience.2006.10.010.PubMedCrossRefGoogle Scholar
  20. 20.
    Krokan HE, Otterlei M, Nilsen H, Kavli B, Skorpen F, Andersen S, et al. Properties and functions of human uracil-DNA glycosylase from the UNG gene. Prog Nucleic Acid Res Mol Biol. 2001;68:365–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, et al. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem. 2002;277(42):39926–36. doi:10.1074/jbc.M207107200.PubMedCrossRefGoogle Scholar
  22. 22.
    Aravind L, Koonin EV. The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Genome Biol. 2000;1(4):RESEARCH0007. doi:10.1186/gb-2000-1-4-research0007.
  23. 23.
    Mitra S. DNA glycosylases: specificity and mechanisms. Prog Nucleic Acid Res Mol Biol. 2001;68:189–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith ML, Seo YR. p53 regulation of DNA excision repair pathways. Mutagenesis. 2002;17(2):149–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoeijmakers JH. Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mech Ageing Dev. 2007;128(7–8):460–2. doi:10.1016/j.mad.2007.05.002.PubMedCrossRefGoogle Scholar
  26. 26.
    Hang B, Singer B. Protein-protein interactions involving DNA glycosylases. Chem Res Toxicol. 2003;16(10):1181–95. doi:10.1021/tx030020p.PubMedCrossRefGoogle Scholar
  27. 27.
    Offer H, Milyavsky M, Erez N, Matas D, Zurer I, Harris CC, et al. Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene. 2001;20(5):581–9. doi:10.1038/sj.onc.1204120.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou J, Ahn J, Wilson SH, Prives C. A role for p53 in base excision repair. EMBO J. 2001;20(4):914–23. doi:10.1093/emboj/20.4.914.PubMedCrossRefGoogle Scholar
  29. 29.
    Inoue K, Kurabayashi A, Shuin T, Ohtsuki Y, Furihata M. Overexpression of p53 protein in human tumors. Med Mol Morphol. 2012;45(3):115–23. doi:10.1007/s00795-012-0575-6.PubMedCrossRefGoogle Scholar
  30. 30.
    Lehmann BD, Pietenpol JA. Targeting mutant p53 in human tumors. J Clin Oncol. 2012;30(29):3648–50. doi:10.1200/JCO.2012.44.0412.PubMedCrossRefGoogle Scholar
  31. 31.
    Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, Turunen M, et al. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ. 2012;19(12):1992–2002. doi:10.1038/cdd.2012.89.PubMedCrossRefGoogle Scholar
  32. 32.
    Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol. 2012;2012:170325. doi:10.1155/2012/170325.PubMedGoogle Scholar
  33. 33.
    da Costa PE, Cavalli LR, Rainho CA. Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines. Epigenetics. 2011;6(12):1413–24. doi:10.4161/epi.6.12.18271.CrossRefGoogle Scholar
  34. 34.
    Tuttle R, Miller KR, Maiorano JN, Termuhlen PM, Gao Y, Berberich SJ. Novel senescence associated gene, YPEL3, is repressed by estrogen in ER+ mammary tumor cells and required for tamoxifen-induced cellular senescence. Int J Cancer. 2012;130(10):2291–9. doi:10.1002/ijc.26239.PubMedCrossRefGoogle Scholar
  35. 35.
    Berberich SJ. RNAi knockdown of HdmX or Hdm2 leads to new insights into p53 signaling. Cell Cycle. 2010;9(18):3640–1.PubMedCrossRefGoogle Scholar
  36. 36.
    Hubertus J, Lacher M, Rottenkolber M, Muller-Hocker J, Berger M, Stehr M, et al. Altered expression of imprinted genes in Wilms tumors. Oncol Rep. 2011;25(3):817–23. doi:10.3892/or.2010.1113.PubMedGoogle Scholar
  37. 37.
    Kaushal M, Mishra AK, Sharma J, Zomawia E, Kataki A, Kapur S, et al. Genomic alterations in breast cancer patients in betel quid and non betel quid chewers. PLoS One. 2012;7(8):e43789. doi:10.1371/journal.pone.0043789.PubMedCrossRefGoogle Scholar
  38. 38.
    Kuerbitz SJ, Pahys J, Wilson A, Compitello N, Gray TA. Hypermethylation of the imprinted NNAT locus occurs frequently in pediatric acute leukemia. Carcinogenesis. 2002;23(4):559–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Schulz R, McCole RB, Woodfine K, Wood AJ, Chahal M, Monk D, et al. Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum Mol Genet. 2009;18(1):118–27. doi:10.1093/hmg/ddn322.PubMedCrossRefGoogle Scholar
  40. 40.
    Evans HK, Wylie AA, Murphy SK, Jirtle RL. The neuronatin gene resides in a “micro-imprinted” domain on human chromosome 20q11.2. Genomics. 2001;77(1–2):99–104.PubMedCrossRefGoogle Scholar
  41. 41.
    Uchihara T, Okubo C, Tanaka R, Minami Y, Inadome Y, Iijima T, et al. Neuronatin expression and its clinicopathological significance in pulmonary non-small cell carcinoma. J Thorac Oncol. 2007;2(9):796–801. doi:10.1097/JTO.0b013e318145af5e.PubMedCrossRefGoogle Scholar
  42. 42.
    Siu IM, Bai R, Gallia GL, Edwards JB, Tyler BM, Eberhart CG, et al. Coexpression of neuronatin splice forms promotes medulloblastoma growth. Neuro Oncol. 2008;10(5):716–24. doi:10.1215/15228517-2008-038.PubMedCrossRefGoogle Scholar
  43. 43.
    Xu DS, Yang C, Proescholdt M, Brundl E, Brawanski A, Fang X, et al. Neuronatin in a subset of glioblastoma multiforme tumor progenitor cells is associated with increased cell proliferation and shorter patient survival. PLoS One. 2012;7(5):e37811. doi:10.1371/journal.pone.0037811.PubMedCrossRefGoogle Scholar
  44. 44.
    Contreras-Vallejos E, Utreras E, Gonzalez-Billault C. Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cell Signal. 2012;24(1):44–52. doi:10.1016/j.cellsig.2011.08.022.PubMedCrossRefGoogle Scholar
  45. 45.
    Rosales JL, Lee KY. Extraneuronal roles of cyclin-dependent kinase 5. Bioessays. 2006;28(10):1023–34. doi:10.1002/bies.20473.PubMedCrossRefGoogle Scholar
  46. 46.
    Arif A. Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Biochem Pharmacol. 2012;84(8):985–93. doi:10.1016/j.bcp.2012.06.027.PubMedCrossRefGoogle Scholar
  47. 47.
    Stav D, Bar I, Sandbank J. Usefulness of CDK5RAP3, CCNB2, and RAGE genes for the diagnosis of lung adenocarcinoma. Int J Biol Markers. 2007;22(2):108–13.PubMedGoogle Scholar
  48. 48.
    Lu X, Bocangel D, Nannenga B, Yamaguchi H, Appella E, Donehower LA. The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Mol Cell. 2004;15(4):621–34. doi:10.1016/j.molcel.2004.08.007.PubMedCrossRefGoogle Scholar
  49. 49.
    Lu X, Nguyen TA, Appella E, Donehower LA. Homeostatic regulation of base excision repair by a p53-induced phosphatase: linking stress response pathways with DNA repair proteins. Cell Cycle. 2004;3(11):1363–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Macurek L, Benada J, Mullers E, Halim VA, Krejcikova K, Burdova K et al. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis. Cell Cycle. 2013;12(2): 251–62. doi: 10.4161/cc.23057.Google Scholar
  51. 51.
    Park HK, Panneerselvam J, Dudimah FD, Dong G, Sebastian S, Zhang J, et al. Wip1 contributes to cell homeostasis maintained by the steady-state level of Wtp53. Cell Cycle. 2011;10(15):2574–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Lowe J, Cha H, Lee MO, Mazur SJ, Appella E, Fornace Jr AJ. Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci. 2012;17:1480–98.CrossRefGoogle Scholar
  53. 53.
    Gaiddon C, Moorthy NC, Prives C. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J. 1999;18(20):5609–21. doi:10.1093/emboj/18.20.5609.PubMedCrossRefGoogle Scholar
  54. 54.
    Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R, et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature. 2012;493(7432):406–10. doi:10.1038/nature11725.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  1. 1.Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations