Tumor Biology

, Volume 34, Issue 6, pp 3871–3877 | Cite as

RETRACTED ARTICLE: MicroRNA-126 inhibits osteosarcoma cells proliferation by targeting Sirt1

  • Jian-Qiang Xu
  • Ping Liu
  • Ming-Jue Si
  • Xiao-Yi Ding
Research Article

Abstract

Numerous studies have recently suggested that miRNAs contribute to the development of various types of human cancer as well as to their proliferation and metastasis. The aim of this study was to investigate the functional significance of miR-126 and to identify its possible target genes in osteosarcoma (OS) cells. Here, we found that expression level of miR-126 was reduced in osteosarcoma cells in comparison with the adjacent normal tissues. The enforced expression of miR-126 was able to inhibit cell proliferation in U2OS and MG62 cells, while miR-126 antisense oligonucleotides (antisense miR-126) promoted cell proliferation. At the molecular level, our results further revealed that expression of Sirt1, a member of histone deacetylase, was negatively regulated by miR-126. Therefore, the data reported here demonstrate that miR-126 is an important regulator in osteosarcoma, which will contribute to better understanding of the important misregulated miRNAs in osteosarcoma cells.

Keywords

MicroRNA-126 Sirt1 Osteosarcoma Cell proliferation 

Notes

Acknowledgments

This work was supported by The National Natural Science Foundation of China (81072188).

References

  1. 1.
    Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125(4):555–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Tan ML, Choong PF, Dass CR. Osteosarcoma: conventional treatment vs. gene therapy. Cancer Biol Ther. 2009;8(2):106–17.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.CrossRefPubMedGoogle Scholar
  5. 5.
    Esquela-Kerscher, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMedGoogle Scholar
  6. 6.
    Bushati N, Cohen SM. MicroRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.CrossRefPubMedGoogle Scholar
  7. 7.
    Ziyan W, Shuhua Y, Xiufang W, Xiaoyun L. MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol. 2011;28(4):1469–74.CrossRefPubMedGoogle Scholar
  8. 8.
    He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, et al. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun. 2009;388(1):35–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28(46):4065–74.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhao G, Cai C, Yang T, Qiu X, Liao B, Li W, et al. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One. 2013;8(1):e53906.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li G, Cai M, Fu D, Chen K, Sun M, Cai Z, et al. Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem. 2012;30(6):1481–90.CrossRefPubMedGoogle Scholar
  12. 12.
    Mao JH, Zhou RP, Peng AF, Liu ZL, Huang SH, Long XH, et al. microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett. 2012;4(5):1125–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Jusufović E, Rijavec M, Keser D, Korošec P, Sodja E, Iljazović E, et al. let-7b and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non-small-cell lung cancer. PLoS One. 2012;7(9):e45577.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, et al. Wang XF.miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol. 2013;15(3):284–94.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li N, Tang A, Huang S, Li Z, Li X, Shen S, Ma J, Wang X. MiR-126 suppresses colon cancer cell proliferation and invasion via inhibiting RhoA/ROCK signaling pathway. Mol Cell Biochem. 2013;380(1–2):107–19.CrossRefPubMedGoogle Scholar
  16. 16.
    Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149–59.CrossRefPubMedGoogle Scholar
  17. 17.
    Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369–80.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005;280(16):16456–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Oka S, Alcendor R, Zhai P, Park JY, Shao D, Cho J, et al. PPARa-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab. 2011;14(5):598–611.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009;10(5):392–404.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer. 2009;9(2):123–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A, et al. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 2007;67:6612–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim JE, Chen J, Lou Z. DBC1 is negative regulator of SIRT1. Nature. 2008;451:583–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP, Martin PM, et al. SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor a in breast cancer. Cancer Res. 2011;71(21):6654–64. 15.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Portmann S, Fahrner R, Lechleiter A, Keogh A, Overney S, Laemmle A, et al. Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol Cancer Ther. 2013;12(4):499–508.CrossRefPubMedGoogle Scholar
  27. 27.
    Li Y, Bäckesjö CM, Haldosén LA, Lindgren U. Resveratrol inhibits proliferation and promotes apoptosis of osteosarcoma cells. Eur J Pharmacol. 2009;609(1–3):13–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang R, Zhang, Kim HS, Xu X, Cao L, Luhasen T, et al. Interplay among BRCA1, SIRT1, and survivin during BRCA1-associated tumorigenesis. Mol Cell. 2008;32:11–20.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One. 2008;3:e2020.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Jian-Qiang Xu
    • 1
  • Ping Liu
    • 2
  • Ming-Jue Si
    • 3
  • Xiao-Yi Ding
    • 3
  1. 1.Department of Orthopaedics, Ruijin HospitalShanghai Jiao Tong University School of Medicine No.197ShanghaiChina
  2. 2.Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
  3. 3.Department of Radiology, Ruijin HospitalShanghai Jiao Tong University School of Medicine No.197ShanghaiChina

Personalised recommendations