Tumor Biology

, Volume 34, Issue 4, pp 2041–2051 | Cite as

Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets

  • Elin Hadler-Olsen
  • Jan-Olof Winberg
  • Lars Uhlin-Hansen
Review

Abstract

Biomarkers are used as tools in cancer diagnostics and in treatment stratification. In most cancers, there are increased levels of one or several members of the matrix metalloproteinases (MMPs). This is a family of proteolytic enzymes that are involved in many phases of cancer progression, including angiogenesis, invasiveness, and metastasis. It has therefore been expected that MMPs could serve as both diagnostic and prognostic markers in cancer patients, but despite a huge number of studies, it has been difficult to establish MMPs as cancer biomarkers. In the present paper, we assess some of the challenges associated with MMP research as well as putative reasons for the conflicting data on the value of these enzymes as diagnostic and prognostic markers in cancer patients. We also review the prognostic value of a number of MMPs in patients with lung, colorectal, breast, and prostate cancers. The review also discusses MMPs as potential target molecules for therapeutic agents and new strategies for development of such drugs.

Keywords

Matrix metalloproteinase Cancer Biomarkers Drug design 

References

  1. 1.
    Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002;3(3):207–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 2011;278(1):28–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov. 2009;8(12):935–48.PubMedCrossRefGoogle Scholar
  5. 5.
    Butler GS, Overall CM. Updated biological roles for matrix metalloproteinases and new "intracellular" substrates revealed by degradomics. Biochemistry. 2009;48(46):10830–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Clark IM, Swingler TE, Sampieri CL, Edwards DR. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol. 2008;40(6–7):1362–78. doi:10.1016/j.biocel.2007.12.006.PubMedCrossRefGoogle Scholar
  7. 7.
    Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol. 2011;12(11):233. doi:10.1186/gb-2011-12-11-233.PubMedCrossRefGoogle Scholar
  8. 8.
    Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal. 2008;1(27):re6. doi:10.1126/scisignal.127re6.PubMedCrossRefGoogle Scholar
  9. 9.
    Cawston TE, Wilson AJ. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol. 2006;20(5):983–1002.PubMedCrossRefGoogle Scholar
  10. 10.
    Duffy M, McGowan P, Gallagher W. Cancer invasion and metastasis: changing views. J Pathol. 2008;214(3):283–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16–27.PubMedCrossRefGoogle Scholar
  13. 13.
    Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol. 2004;48(5–6):411–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14(2):163–76.PubMedGoogle Scholar
  16. 16.
    Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res. 2003;63(17):5224–9.PubMedGoogle Scholar
  17. 17.
    van Hinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol. 2006;26(4):716–28. doi:10.1161/01.ATV.0000209518.58252.17.PubMedCrossRefGoogle Scholar
  18. 18.
    Fingleton B. Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci. 2006;11:479–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Ha HY, Moon HB, Nam MS, Lee JW, Ryoo ZY, Lee TH, et al. Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res. 2001;61(3):984–90.PubMedGoogle Scholar
  21. 21.
    Rudolph-Owen LA, Chan R, Muller WJ, Matrisian LM. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 1998;58(23):5500–6.PubMedGoogle Scholar
  22. 22.
    Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98(2):137–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Witty JP, Lempka T, Coffey Jr RJ, Matrisian LM. Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Res. 1995;55(7):1401–6.PubMedGoogle Scholar
  24. 24.
    Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 1998;58(5):1048–51.PubMedGoogle Scholar
  26. 26.
    Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, et al. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis. 1999;17(2):177–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA. 1997;94(4):1402–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Acuff HB, Sinnamon M, Fingleton B, Boone B, Levy SE, Chen X, et al. Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res. 2006;66(16):7968–75. doi:10.1158/0008-5472.CAN-05-4279.PubMedCrossRefGoogle Scholar
  29. 29.
    Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet. 2003;35(3):252–7.PubMedCrossRefGoogle Scholar
  30. 30.
    McCawley LJ, Crawford HC, King Jr LE, Mudgett J, Matrisian LM. A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res. 2004;64(19):6965–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Hadler-Olsen E, Kanapathippillai P, Berg E, Svineng G, Winberg JO, Uhlin-Hansen L. Gelatin In situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity. J Histochem Cytochem. 2009;58(1):29–39. doi:10.1369/jhc.2009.954354.PubMedCrossRefGoogle Scholar
  32. 32.
    Snoek-van Beurden PA, Von den Hoff JW. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques. 2005;38(1):73–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Oliver GW, Leferson JD, Stetler-Stevenson WG, Kleiner DE. Quantitative reverse zymography: analysis of picogram amounts of metalloproteinase inhibitors using gelatinase A and B reverse zymograms. Anal Biochem. 1997;244(1):161–6. doi:10.1006/abio.1996.9895.PubMedCrossRefGoogle Scholar
  34. 34.
    Mathisen B, Lindstad RI, Hansen J, El-Gewely SA, Maelandsmo GM, Hovig E, et al. S100A4 regulates membrane induced activation of matrix metalloproteinase-2 in osteosarcoma cells. Clin Exp Metastasis. 2003;20(8):701–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Hattori S, Fujisaki H, Kiriyama T, Yokoyama T, Irie S. Real-time zymography and reverse zymography: a method for detecting activities of matrix metalloproteinases and their inhibitors using FITC-labeled collagen and casein as substrates. Anal Biochem. 2002;301(1):27–34. doi:10.1006/abio.2001.5479.PubMedCrossRefGoogle Scholar
  36. 36.
    Hurst NG, Stocken DD, Wilson S, Keh C, Wakelam MJ, Ismail T. Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients. Br J Cancer. 2007;97(7):971–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilson S, Wakelam MJ, Hobbs RF, Ryan AV, Dunn JA, Redman VD, et al. Evaluation of the accuracy of serum MMP-9 as a test for colorectal cancer in a primary care population. BMC Cancer. 2006;6:258. doi:10.1186/1471-2407-6-258.PubMedCrossRefGoogle Scholar
  38. 38.
    Eissa S, Ali-Labib R, Swellam M, Bassiony M, Tash F, El-Zayat TM. Noninvasive diagnosis of bladder cancer by detection of matrix metalloproteinases (MMP-2 and MMP-9) and their inhibitor (TIMP-2) in urine. Eur Urol. 2007;52(5):1388–96. doi:10.1016/j.eururo.2007.04.006.PubMedCrossRefGoogle Scholar
  39. 39.
    Roy R, Louis G, Loughlin KR, Wiederschain D, Kilroy SM, Lamb CC, et al. Tumor-specific urinary matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. Clin Cancer Res. 2008;14(20):6610–7. doi:10.1158/1078-0432.CCR-08-1136.PubMedCrossRefGoogle Scholar
  40. 40.
    Fernandez CA, Yan L, Louis G, Yang J, Kutok JL, Moses MA. The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res. 2005;11(15):5390–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Incorvaia L, Badalamenti G, Rini G, Arcara C, Fricano S, Sferrazza C, et al. MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. Anticancer Res. 2007;27(3B):1519–25.PubMedGoogle Scholar
  42. 42.
    Lukaszewicz-Zajac M, Mroczko B, Kozlowski M, Niklinski J, Laudanski J, Szmitkowski M. Elevated levels of serum metalloproteinase 9 in patients with esophageal squamous cell carcinoma. Pol Arch Med Wewn. 2009;119(9):558–63.PubMedGoogle Scholar
  43. 43.
    Mroczko B, Kozlowski M, Groblewska M, Lukaszewicz M, Niklinski J, Jelski W, et al. The diagnostic value of the measurement of matrix metalloproteinase 9 (MMP-9), squamous cell cancer antigen (SCC) and carcinoembryonic antigen (CEA) in the sera of esophageal cancer patients. Clin Chim Acta. 2008;389(1–2):61–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Mroczko B, Lukaszewicz-Zajac M, Wereszczynska-Siemiatkowska U, Groblewska M, Gryko M, Kedra B, et al. Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: metalloproteinase-9 as an independent prognostic factor. Pancreas. 2009;38(6):613–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Patel S, Sumitra G, Koner BC, Saxena A. Role of serum matrix metalloproteinase-2 and −9 to predict breast cancer progression. Clin Biochem. 2011;44(10–11):869–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E, et al. Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer. 2009;9:390.PubMedCrossRefGoogle Scholar
  47. 47.
    Ramankulov A, Lein M, Johannsen M, Schrader M, Miller K, Jung K. Plasma matrix metalloproteinase-7 as a metastatic marker and survival predictor in patients with renal cell carcinomas. Cancer Sci. 2008;99(6):1188–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Sarkissian G, Fergelot P, Lamy PJ, Patard JJ, Culine S, Jouin P, et al. Identification of pro-MMP-7 as a serum marker for renal cell carcinoma by use of proteomic analysis. Clin Chem. 2008;54(3):574–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Shpitzer T, Hamzany Y, Bahar G, Feinmesser R, Savulescu D, Borovoi I, et al. Salivary analysis of oral cancer biomarkers. Br J Cancer. 2009;101(7):1194–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Smith ER, Zurakowski D, Saad A, Scott RM, Moses MA. Urinary biomarkers predict brain tumor presence and response to therapy. Clin Cancer Res. 2008;14(8):2378–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Cribier B, Noacco G, Peltre B, Grosshans E. Stromelysin 3 expression: a useful marker for the differential diagnosis dermatofibroma versus dermatofibrosarcoma protuberans. J Am Acad Dermatol. 2002;46(3):408–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim HJ, Lee JY, Kim SH, Seo YJ, Lee JH, Park JK, et al. Stromelysin-3 expression in the differential diagnosis of dermatofibroma and dermatofibrosarcoma protuberans: comparison with factor XIIIa and CD34. Br J Dermatol. 2007;157(2):319–24.PubMedCrossRefGoogle Scholar
  53. 53.
    Gouyer V, Conti M, Devos P, Zerimech F, Copin MC, Creme E, et al. Tissue inhibitor of metalloproteinase 1 is an independent predictor of prognosis in patients with nonsmall cell lung carcinoma who undergo resection with curative intent. Cancer. 2005;103(8):1676–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Hofmann HS, Bartling B, Simm A, Murray R, Aziz N, Hansen G, et al. Identification and classification of differentially expressed genes in non-small cell lung cancer by expression profiling on a global human 59.620-element oligonucleotide array. Oncol Rep. 2006;16(3):587–95.PubMedGoogle Scholar
  55. 55.
    Hsu CP, Shen GH, Ko JL. Matrix metalloproteinase-13 expression is associated with bone marrow microinvolvement and prognosis in non-small cell lung cancer. Lung Cancer. 2006;52(3):349–57.PubMedCrossRefGoogle Scholar
  56. 56.
    Li L, Mei TH, Zhou XD, Zhang XG. Expression and clinical significance of matrix metalloproteinase (MMP)-26 protein in non-small cell lung cancer. Ai Zheng. 2009;28(1):60–3.PubMedGoogle Scholar
  57. 57.
    Safranek J, Pesta M, Holubec L, Kulda V, Dreslerova J, Vrzalova J, et al. Expression of MMP-7, MMP-9, TIMP-1 and TIMP-2 mRNA in lung tissue of patients with non-small cell lung cancer (NSCLC) and benign pulmonary disease. Anticancer Res. 2009;29(7):2513–7.PubMedGoogle Scholar
  58. 58.
    Li M, Xiao T, Zhang Y, Feng L, Lin D, Liu Y, et al. Prognostic significance of matrix metalloproteinase-1 levels in peripheral plasma and tumour tissues of lung cancer patients. Lung Cancer. 2010;69(3):341–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Qian Q, Wang Q, Zhan P, Peng L, Wei SZ, Shi Y, et al. The role of matrix metalloproteinase 2 on the survival of patients with non-small cell lung cancer: a systematic review with meta-analysis. Cancer Invest. 2010;28(6):661–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim SJ, Rabbani ZN, Dewhirst MW, Vujaskovic Z, Vollmer RT, Schreiber EG, et al. Expression of HIF-1alpha, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer. 2005;49(3):325–35.PubMedCrossRefGoogle Scholar
  61. 61.
    Leinonen T, Pirinen R, Bohm J, Johansson R, Ropponen K, Kosma VM. Expression of matrix metalloproteinases 7 and 9 in non-small cell lung cancer: relation to clinicopathological factors, beta-catenin and prognosis. Lung Cancer. 2006;51(3):313–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Matsuyama M, Chijiwa T, Inoue Y, Abe Y, Nishi M, Miyazaki N, et al. Alternative splicing variant of vascular endothelial growth factor-A is a critical prognostic factor in non-small cell lung cancer. Oncol Rep. 2009;22(6):1407–13.PubMedGoogle Scholar
  63. 63.
    Shimanuki Y, Takahashi K, Cui R, Hori S, Takahashi F, Miyamoto H, et al. Role of serum vascular endothelial growth factor in the prediction of angiogenesis and prognosis for non-small cell lung cancer. Lung. 2005;183(1):29–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Takemoto N, Tada M, Hida Y, Asano T, Cheng S, Kuramae T, et al. Low expression of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) indicates a shorter survival after resection in patients with adenocarcinoma of the lung. Lung Cancer. 2007;58(3):376–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Grossi F, Spizzo R, Bordo D, Cacitti V, Valent F, Rossetto C, et al. Prognostic stratification of stage IIIA pN2 non-small cell lung cancer by hierarchical clustering analysis of tissue microarray immunostaining data: an Alpe Adria Thoracic Oncology Multidisciplinary Group study (ATOM 014). J Thorac Oncol. 2010;5(9):1354–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Hoikkala S, Paakko P, Soini Y, Makitaro R, Kinnula V, Turpeenniemi-Hujanen T. Tissue MMP-2 and MMP-9 [corrected] are better prognostic factors than serum MMP-2/TIMP-2—complex or TIMP-1 [corrected] in stage [corrected] I-III lung carcinoma. Cancer Lett. 2006;236(1):125–32. doi:10.1016/j.canlet.2005.05.012.PubMedCrossRefGoogle Scholar
  67. 67.
    Martins SJ, Takagaki TY, Silva AG, Gallo CP, Silva FB, Capelozzi VL. Prognostic relevance of TTF-1 and MMP-9 expression in advanced lung adenocarcinoma. Lung Cancer. 2009;64(1):105–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Ylisirnio S, Hoyhtya M, Turpeenniemi-Hujanen T. Serum matrix metalloproteinases −2, -9 and tissue inhibitors of metalloproteinases −1, -2 in lung cancer—TIMP-1 as a prognostic marker. Anticancer Res. 2000;20(2B):1311–6.PubMedGoogle Scholar
  69. 69.
    Zheng S, Chang Y, Hodges KB, Sun Y, Ma X, Xue Y, et al. Expression of KISS1 and MMP-9 in non-small cell lung cancer and their relations to metastasis and survival. Anticancer Res. 2010;30(3):713–8.PubMedGoogle Scholar
  70. 70.
    Peng WJ, Zhang JQ, Wang BX, Pan HF, Lu MM, Wang J. Prognostic value of matrix metalloproteinase 9 expression in patients with non-small cell lung cancer. Clin Chim Acta: Int J Clin Chem. 2012. doi:10.1016/j.cca.2012.03.012.Google Scholar
  71. 71.
    Zhu ZH, Sun BY, Ma Y, Shao JY, Long H, Zhang X, et al. Three immunomarker support vector machines-based prognostic classifiers for stage IB non-small-cell lung cancer. J Clin Oncol. 2009;27(7):1091–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Liu D, Nakano J, Ishikawa S, Yokomise H, Ueno M, Kadota K, et al. Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer. 2007;58(3):384–91.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu H, Zhang T, Li X, Huang J, Wu B, Huang X, et al. Predictive value of MMP-7 expression for response to chemotherapy and survival in patients with non-small cell lung cancer. Cancer Sci. 2008;99(11):2185–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Garcia-Albeniz X, Pericay C, Alonso-Espinaco V, Alonso V, Escudero P, Fernandez-Martos C, et al. Serum matrilysin correlates with poor survival independently of KRAS and BRAF status in refractory advanced colorectal cancer patients treated with irinotecan plus cetuximab. Tumour Biol: J Int Soc Oncodev Biol Med. 2011;32(2):417–24. doi:10.1007/s13277-010-0136-3.CrossRefGoogle Scholar
  75. 75.
    Hilska M, Roberts PJ, Collan YU, Laine VJ, Kossi J, Hirsimaki P, et al. Prognostic significance of matrix metalloproteinases-1, -2, -7 and −13 and tissue inhibitors of metalloproteinases-1, -2, -3 and −4 in colorectal cancer. Int J Cancer. 2007;121(4):714–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Koskensalo S, Louhimo J, Nordling S, Hagstrom J, Haglund C. MMP-7 as a prognostic marker in colorectal cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2011;32(2):259–64. doi:10.1007/s13277-010-0080-2.CrossRefGoogle Scholar
  77. 77.
    Ring P, Johansson K, Hoyhtya M, Rubin K, Lindmark G. Expression of tissue inhibitor of metalloproteinases TIMP-2 in human colorectal cancer—a predictor of tumour stage. Br J Cancer. 1997;76(6):805–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Tahara K, Mimori K, Iinuma H, Iwatsuki M, Yokobori T, Ishii H, et al. Serum matrix-metalloproteinase-1 is a bona fide prognostic marker for colorectal cancer. Ann Surg Oncol. 2010;17(12):3362–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Murray GI, Duncan ME, O'Neil P, Melvin WT, Fothergill JE. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med. 1996;2(4):461–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Sunami E, Tsuno N, Osada T, Saito S, Kitayama J, Tomozawa S, et al. MMP-1 is a prognostic marker for hematogenous metastasis of colorectal cancer. Oncologist. 2000;5(2):108–14.PubMedCrossRefGoogle Scholar
  81. 81.
    Hettiaratchi A, Hawkins NJ, McKenzie G, Ward RL, Hunt JE, Wakefield D, et al. The collagenase-1 (MMP-1) gene promoter polymorphism - 1607/2G is associated with favourable prognosis in patients with colorectal cancer. Br J Cancer. 2007;96(5):783–92.PubMedCrossRefGoogle Scholar
  82. 82.
    Bendardaf R, Buhmeida A, Hilska M, Laato M, Syrjanen S, Syrjanen K, et al. MMP-9 (gelatinase B) expression is associated with disease-free survival and disease-specific survival in colorectal cancer patients. Cancer Invest. 2010;28(1):38–43.PubMedCrossRefGoogle Scholar
  83. 83.
    Schwandner O, Schlamp A, Broll R, Bruch HP. Clinicopathologic and prognostic significance of matrix metalloproteinases in rectal cancer. Int J Colorectal Dis. 2007;22(2):127–36.PubMedCrossRefGoogle Scholar
  84. 84.
    Svagzdys S, Lesauskaite V, Pangonyte D, Saladzinskas Z, Tamelis A, Pavalkis D. Matrix metalloproteinase-9 is a prognostic marker to predict survival of patients who underwent surgery due to rectal carcinoma. Tohoku J Exp Med. 2011;223(1):67–73.PubMedCrossRefGoogle Scholar
  85. 85.
    Waas ET, Lomme RM, DeGroot J, Wobbes T, Hendriks T. Tissue levels of active matrix metalloproteinase-2 and −9 in colorectal cancer. Br J Cancer. 2002;86(12):1876–83.PubMedCrossRefGoogle Scholar
  86. 86.
    Adachi Y, Yamamoto H, Itoh F, Arimura Y, Nishi M, Endo T, et al. Clinicopathologic and prognostic significance of matrilysin expression at the invasive front in human colorectal cancers. Int J Cancer. 2001;95(5):290–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Masaki T, Matsuoka H, Sugiyama M, Abe N, Goto A, Sakamoto A, et al. Matrilysin (MMP-7) as a significant determinant of malignant potential of early invasive colorectal carcinomas. Br J Cancer. 2001;84(10):1317–21.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang WS, Chen PM, Wang HS, Liang WY, Su Y. Matrix metalloproteinase-7 increases resistance to Fas-mediated apoptosis and is a poor prognostic factor of patients with colorectal carcinoma. Carcinogenesis. 2006;27(5):1113–20.PubMedCrossRefGoogle Scholar
  89. 89.
    Yang W, Arii S, Gorrin-Rivas MJ, Mori A, Onodera H, Imamura M. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer. 2001;91(7):1277–83.PubMedCrossRefGoogle Scholar
  90. 90.
    Cheng CW, Yu JC, Wang HW, Huang CS, Shieh JC, Fu YP, et al. The clinical implications of MMP-11 and CK-20 expression in human breast cancer. Clin Chim Acta. 2010;411(3–4):234–41.PubMedCrossRefGoogle Scholar
  91. 91.
    Jiang WG, Davies G, Martin TA, Parr C, Watkins G, Mason MD, et al. Expression of membrane type-1 matrix metalloproteinase, MT1-MMP in human breast cancer and its impact on invasiveness of breast cancer cells. Int J Mol Med. 2006;17(4):583–90.PubMedGoogle Scholar
  92. 92.
    Kohrmann A, Kammerer U, Kapp M, Dietl J, Anacker J. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: new findings and review of the literature. BMC Cancer. 2009;9:188.PubMedCrossRefGoogle Scholar
  93. 93.
    Somiari SB, Somiari RI, Heckman CM, Olsen CH, Jordan RM, Russell SJ, et al. Circulating MMP2 and MMP9 in breast cancer—potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories. Int J Cancer. 2006;119(6):1403–11.PubMedCrossRefGoogle Scholar
  94. 94.
    Stankovic S, Konjevic G, Gopcevic K, Jovic V, Inic M, Jurisic V. Activity of MMP-2 and MMP-9 in sera of breast cancer patients. Pathol Res Pract. 2010;206(4):241–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhao YG, Xiao AZ, Ni J, Man YG, Sang QX. Expression of matrix metalloproteinase-26 in multiple human cancer tissues and smooth muscle cells. Ai Zheng. 2009;28(11):1168–75.PubMedGoogle Scholar
  96. 96.
    McGowan PM, Duffy MJ. Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database. Ann Oncol. 2008;19(9):1566–72.PubMedCrossRefGoogle Scholar
  97. 97.
    del Casar JM, Gonzalez LO, Alvarez E, Junquera S, Marin L, Gonzalez L, et al. Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumor stromal fibroblasts and those at the invasive front of breast carcinomas. Breast Cancer Res Treat. 2009;116(1):39–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Vizoso FJ, Gonzalez LO, Corte MD, Rodriguez JC, Vazquez J, Lamelas ML, et al. Study of matrix metalloproteinases and their inhibitors in breast cancer. Br J Cancer. 2007;96(6):903–11.PubMedCrossRefGoogle Scholar
  99. 99.
    Mylona E, Nomikos A, Magkou C, Kamberou M, Papassideri I, Keramopoulos A, et al. The clinicopathological and prognostic significance of membrane type 1 matrix metalloproteinase (MT1-MMP) and MMP-9 according to their localization in invasive breast carcinoma. Histopathology. 2007;50(3):338–47.PubMedCrossRefGoogle Scholar
  100. 100.
    Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res. 2004;10(22):7621–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Beeghly-Fadiel A, Shu XO, Long J, Li C, Cai Q, Cai H, et al. Genetic polymorphisms in the MMP-7 gene and breast cancer survival. Int J Cancer. 2009;124(1):208–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S, et al. Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer. 2008;8:83.PubMedCrossRefGoogle Scholar
  103. 103.
    Savinov AY, Remacle AG, Golubkov VS, Krajewska M, Kennedy S, Duffy MJ, et al. Matrix metalloproteinase 26 proteolysis of the NH2-terminal domain of the estrogen receptor beta correlates with the survival of breast cancer patients. Cancer Res. 2006;66(5):2716–24.PubMedCrossRefGoogle Scholar
  104. 104.
    del Casar JM, Carreno G, Gonzalez LO, Junquera S, Gonzalez-Reyes S, Gonzalez JM, et al. Expression of metalloproteases and their inhibitors in primary tumors and in local recurrences after mastectomy for breast cancer. J Cancer Res Clin Oncol. 2010;136(7):1049–58.PubMedCrossRefGoogle Scholar
  105. 105.
    Escaff S, Fernandez JM, Gonzalez LO, Suarez A, Gonzalez-Reyes S, Gonzalez JM, et al. Study of matrix metalloproteinases and their inhibitors in prostate cancer. Br J Cancer. 2010;102(5):922–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Escaff S, Fernandez JM, Gonzalez LO, Suarez A, Gonzalez-Reyes S, Gonzalez JM, et al. Collagenase-3 expression by tumor cells and gelatinase B expression by stromal fibroblast-like cells are associated with biochemical recurrence after radical prostatectomy in patients with prostate cancer. World J Urol. 2011;29(5):657–63. doi:10.1007/s00345-010-0595-6.PubMedCrossRefGoogle Scholar
  107. 107.
    Morgia G, Falsaperla M, Malaponte G, Madonia M, Indelicato M, Travali S, et al. Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer. Urol Res. 2005;33(1):44–50.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhong WD, Han ZD, He HC, Bi XC, Dai QS, Zhu G, et al. CD147, MMP-1, MMP-2 and MMP-9 protein expression as significant prognostic factors in human prostate cancer. Oncology. 2008;75(3–4):230–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Szarvas T, Becker M, Vom DF, Meschede J, Scherag A, Bankfalvi A, et al. Elevated serum matrix metalloproteinase 7 levels predict poor prognosis after radical prostatectomy. Int J Cancer. 2011;128(6):1486–92.PubMedCrossRefGoogle Scholar
  110. 110.
    Szarvas T, Jager T, Becker M, Tschirdewahn S, Niedworok C, Kovalszky I, et al. Validation of circulating MMP-7 level as an independent prognostic marker of poor survival in urinary bladder cancer. Pathol Oncol Res. 2011;17(2):325–32.PubMedCrossRefGoogle Scholar
  111. 111.
    Zhang L, Shi J, Feng J, Klocker H, Lee C, Zhang J. Type IV collagenase (matrix metalloproteinase-2 and −9) in prostate cancer. Prostate Cancer Prostatic Dis. 2004;7(4):327–32.PubMedCrossRefGoogle Scholar
  112. 112.
    Miyake H, Muramaki M, Kurahashi T, Takenaka A, Fujisawa M. Expression of potential molecular markers in prostate cancer: correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urol Oncol. 2010;28(2):145–51.PubMedCrossRefGoogle Scholar
  113. 113.
    Boxler S, Djonov V, Kessler TM, Hlushchuk R, Bachmann LM, Held U, et al. Matrix metalloproteinases and angiogenic factors: predictors of survival after radical prostatectomy for clinically organ-confined prostate cancer? Am J Pathol. 2010;177(5):2216–24.PubMedCrossRefGoogle Scholar
  114. 114.
    De CC, Ravasi L, Zorzino L, Sandri MT, Botteri E, Verweij F, et al. Circulating levels of VCAM and MMP-2 may help identify patients with more aggressive prostate cancer. Curr Cancer Drug Targets. 2008;8(3):199–206.CrossRefGoogle Scholar
  115. 115.
    Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92.PubMedCrossRefGoogle Scholar
  116. 116.
    Martin MD, Matrisian LM. The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev. 2007;26(3–4):717–24.PubMedCrossRefGoogle Scholar
  117. 117.
    Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer. 2002;2(9):657–72.PubMedCrossRefGoogle Scholar
  118. 118.
    Morrison CJ, Butler GS, Rodriguez D, Overall CM. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol. 2009;21(5):645–53.PubMedCrossRefGoogle Scholar
  119. 119.
    Terp GE, Cruciani G, Christensen IT, Jorgensen FS. Structural differences of matrix metalloproteinases with potential implications for inhibitor selectivity examined by the GRID/CPCA approach. J Med Chem. 2002;45(13):2675–84.PubMedCrossRefGoogle Scholar
  120. 120.
    Cuniasse P, Devel L, Makaritis A, Beau F, Georgiadis D, Matziari M, et al. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie. 2005;87(3–4):393–402.PubMedCrossRefGoogle Scholar
  121. 121.
    Chung L, Shimokawa K, Dinakarpandian D, Grams F, Fields GB, Nagase H. Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J Biol Chem. 2000;275(38):29610–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, et al. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004;23(15):3020–30.PubMedCrossRefGoogle Scholar
  123. 123.
    Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, et al. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc Natl Acad Sci U S A. 2012;109(31):12461–6. doi:10.1073/pnas.1204991109.PubMedCrossRefGoogle Scholar
  124. 124.
    Bertini I, Fragai M, Luchinat C, Melikian M, Toccafondi M, Lauer JL, et al. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. J Am Chem Soc. 2012;134(4):2100–10. doi:10.1021/ja208338j.PubMedCrossRefGoogle Scholar
  125. 125.
    Kousidou OC, Mitropoulou TN, Roussidis AE, Kletsas D, Theocharis AD, Karamanos NK. Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. Int J Oncol. 2005;26(4):1101–9.PubMedGoogle Scholar
  126. 126.
    Mitropoulou TN, Tzanakakis GN, Kletsas D, Kalofonos HP, Karamanos NK. Letrozole as a potent inhibitor of cell proliferation and expression of metalloproteinases (MMP-2 and MMP-9) by human epithelial breast cancer cells. Int J Cancer J Int du Cancer. 2003;104(2):155–60. doi:10.1002/ijc.10941.CrossRefGoogle Scholar
  127. 127.
    Aikawa Y, Morimoto K, Yamamoto T, Chaki H, Hashiramoto A, Narita H, et al. Treatment of arthritis with a selective inhibitor of c-Fos/activator protein-1. Nat Biotechnol. 2008;26(7):817–23. doi:10.1038/nbt1412.PubMedCrossRefGoogle Scholar
  128. 128.
    Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis. 2007;66(12):1616–21. doi:10.1136/ard.2007.069377.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Elin Hadler-Olsen
    • 1
  • Jan-Olof Winberg
    • 1
  • Lars Uhlin-Hansen
    • 1
    • 2
  1. 1.Department of Medical Biology, Faculty of Health SciencesUniversity of TromsøTromsøNorway
  2. 2.Department of PathologyUniversity Hospital of North NorwayTromsøNorway

Personalised recommendations