Tumor Biology

, Volume 34, Issue 4, pp 2109–2117 | Cite as

Vascular endothelial growth factor receptors 1,3 and caveolin-1 are implicated in colorectal cancer aggressiveness and prognosis—correlations with epidermal growth factor receptor, CD44v6, focal adhesion kinase, and c-Met

  • Alexandros Garouniatis
  • Adamantia Zizi-Sermpetzoglou
  • Spyros Rizos
  • Alkiviadis Kostakis
  • Nikolaos Nikiteas
  • Athanasios G. Papavassiliou
Research Article

Abstract

Vascular endothelial growth factor receptor-1 (VEGFR-1) and caveolin-1 have been shown to act both as tumor-promoting and tumor-suppressing proteins in various malignancies as well as in colorectal cancer (CRC), while VEGFR-3’s lymphagiogenic involvement and connection to tumor parameters has yielded heterogenic results. This study was designed to investigate the expression of these molecules in 183 human CRC tissue specimens and explore their effect in both clinicopathological parameters and disease prognosis. We also utilize our previous results regarding epidermal growth factor receptor (EGFR), c-Met, CD44v6, and focal adhesion kinase, in an attempt to further clarify their distinct role in tumor prognosis and their crosstalk. Caveolin-1 was more freely distributed in the neoplasms of the right colon and restricted towards the left and the rectal cancer samples (p = 0.022); VEGFR-3 was associated with higher nodal metastasis’ status (p = 0.001) and staging (p = 0.006), and loss of VEGFR-1 predicted distant metastasis (p = 0.026) and advanced stage (p = 0.049). Prompted by previous reports, we performed all analyses also in the patient group of early (I and II) tumor stage where it was evident that VEGFR-1 was more frequently expressed in patients under 60 years old (p = 0.014) and VEGFR-3 was significantly elevated in left colon cancers (p = 0.039) and female patients (p = 0.038). Within the advanced stage (III and IV), the absence of VEGFR-1 exhibited a tendency for higher M status (p = 0.067) and lack of caveolin-1 signified worse AJCC classification (p = 0.053). Additionally, patient survival was influenced from VEGFR-3 (p = 0.019) for the whole sample, whereas subgroup analyses provided a correlation between caveolin-1 expression and improved survival in the early detection group of patients (p = 0.022). Using Cox regression for all available markers, EGFR, CD44v6, and VEGFR-1 emerged in this study as potential surrogate markers, the latter having positive prognostic significance. We further explored the multiple receptor correlations that were identified.

Keywords

VEGFR-1 VEGFR-3 Caveolin-1 Colorectal cancer (CRC) 

Notes

Conflicts of interest

None

Supplementary material

13277_2013_776_MOESM1_ESM.doc (25 kb)
ESM 1 DOC 25 kb
13277_2013_776_MOESM2_ESM.doc (28 kb)
ESM 2 DOC 28 kb
13277_2013_776_MOESM3_ESM.doc (34 kb)
ESM 3 DOC 34 kb
13277_2013_776_MOESM4_ESM.doc (34 kb)
ESM 4 DOC 33 kb
13277_2013_776_MOESM5_ESM.doc (55 kb)
ESM 5 DOC 55 kb
13277_2013_776_MOESM6_ESM.doc (55 kb)
ESM 6 DOC 55 kb
13277_2013_776_MOESM7_ESM.doc (60 kb)
ESM 7 DOC 60 kb
13277_2013_776_MOESM8_ESM.doc (54 kb)
ESM 8 DOC 53 kb
13277_2013_776_MOESM9_ESM.doc (52 kb)
ESM 9 DOC 52 kb
13277_2013_776_MOESM10_ESM.doc (44 kb)
ESM 10 DOC 43 kb

References

  1. 1.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376:66–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Svendsen MN, Lykke J, Werther K, Christensen IJ, Nielsen HJ. Concentrations of VEGF and VEGFR1 in paired tumor arteries and veins in patients with rectal cancer. Oncol Res. 2004;14:611–5.PubMedGoogle Scholar
  4. 4.
    Myśliwiec P, Piotrowski Z, Zalewski B, Kukliński A, Pawlak K. Plasma VEGF-A and its soluble receptor R1 correlate with the clinical stage of colorectal cancer. Rocz Akad Med Bialymst. 2004;49:85–7.PubMedGoogle Scholar
  5. 5.
    Lesslie DP, Summy JM, Parikh NU, Fan F, Trevino JG, Sawyer TK, et al. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br J Cancer. 2006;94:1710–7.PubMedGoogle Scholar
  6. 6.
    Yamaguchi T, Bando H, Mori T, Takahashi K, Matsumoto H, Yasutome M, et al. Overexpression of soluble vascular endothelial growth factor receptor 1 in colorectal cancer: association with progression and prognosis. Cancer Sci. 2007;98:405–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Yang SH, Lin JK, Huang CJ, Chen WS, Li SY, Chiu JH. Silibinin inhibits angiogenesis via Flt-1, but not KDR, receptor up-regulation. J Surg Res. 2005;128:140–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Kong HL, Hecht D, Song W, Kovesdi I, Hackett NR, Yayon A, et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum Gene Ther. 1998;9:823–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Roda JM, Wang Y, Sumner LA, Phillips GS, Marsh CB, Eubank TD. Stabilization of HIF-2alpha induces sVEGFR-1 production from tumor-associated macrophages and decreases tumor growth in a murine melanoma model. J Immunol. 2012;189:3168–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995;92:3566–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol. 2000;156:1499–504.PubMedCrossRefGoogle Scholar
  12. 12.
    Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998;282:946–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Moriyama M, Kumagai S, Kawashiri S, Kojima K, Kakihara K, Yamamoto E. Immunohistochemical study of tumour angiogenesis in oral squamous cell carcinoma. Oral Oncol. 1997;33:369–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Yonemura Y, Endo Y, Tabata K, Kawamura T, Yun HY, Bandou E, et al. Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer. Int J Clin Oncol. 2005;10:318–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Schneider M, Büchler P, Giese N, Giese T, Wilting J, Büchler MW, et al. Role of lymphangiogenesis and lymphangiogenic factors during pancreatic cancer progression and lymphatic spread. Int J Oncol. 2006;28:883–90.PubMedGoogle Scholar
  16. 16.
    Valtola R, Salven P, Heikkilä P, Taipale J, Joensuu H, Rehn M, et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol. 1999;154:1381–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, et al. Lymphatic metastasis in the absence of functional intratumour lymphatics. Science. 2002;296:1883–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams TM, Lisanti MP. The caveolin proteins. Genome Biol. 2004;5:214.PubMedCrossRefGoogle Scholar
  19. 19.
    Ha TK, Chi SG. CAV1/caveolin 1 enhances aerobic glycolysis in colon cancer cells via activation of SLC2A3/GLUT3 transcription. Autophagy. 2012;8:1684–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Shatz M, Liscovitch M. Caveolin-1: a tumor-promoting role in human cancer. Int J Radiat Biol. 2008;84:177–89.PubMedCrossRefGoogle Scholar
  21. 21.
    Selga E, Morales C, Noé V, Peinado MA, Ciudad CJ. Role of caveolin 1, E-cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells. BMC Med Genet. 2008;1:35.Google Scholar
  22. 22.
    Nimri L, Barak H, Graeve L, Schwartz B. Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells. Mol Carcinog. 2012. doi: 10.1002/mc.21927.PubMedGoogle Scholar
  23. 23.
    Mori Y, Cai K, Cheng Y, Wang S, Paun B, Hamilton JP, et al. A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology. 2006;131:797–808.PubMedCrossRefGoogle Scholar
  24. 24.
    Cantiani L, Manara MC, Zucchini C, De Sanctis P, Zuntini M, Valvassori L, et al. Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Res. 2007;67:7675–85.PubMedCrossRefGoogle Scholar
  25. 25.
    Basu Roy UK, Henkhaus RS, Loupakis F, Cremolini C, Gerner EW, Ignatenko NA. Caveolin-1 is a novel regulator of K-RAS-dependent migration in colon carcinogenesis. Int J Cancer. 2012. doi: 10.1002/ijc.28001.Google Scholar
  26. 26.
    Garouniatis A, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG. FAK, CD44v6, c-Met and EGFR in colorectal cancer parameters: tumour progression, metastasis, patient survival and receptor crosstalk. Int J Colorectal Dis. 2013;28:9–18.PubMedCrossRefGoogle Scholar
  27. 27.
    Kim JY, Bae BN, Kwon JE, Kim HJ, Park K. Prognostic significance of epidermal growth factor receptor and vascular endothelial growth factor receptor in colorectal adenocarcinoma. APMIS. 2011;119:449–59.PubMedCrossRefGoogle Scholar
  28. 28.
    Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci U S A. 1996;93:131–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Mehnert JM, McCarthy MM, Jilaveanu L, Flaherty KT, Aziz S, Camp RL, et al. Quantitative expression of VEGF, VEGF-R1, VEGF-R2 and VEGF-R3 in melanoma tissue microarrays. Hum Pathol. 2010;41:375–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Fine SW, Lisanti MP, Galbiati F, Li M. Elevated expression of caveolin-1 in adenocarcinoma of the colon. Am J Clin Pathol. 2001;115:719–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Simiantonaki N, Taxeidis M, Jayasinghe C, Kirkpatrick CJ. Epithelial expression of VEGF receptors in colorectal carcinomas and their relationship to metastatic status. Anticancer Res. 2007;27:3245–50.PubMedGoogle Scholar
  32. 32.
    Okita NT, Yamada Y, Takahari D, Hirashima Y, Matsubara J, Kato K, et al. Vascular endothelial growth factor receptor expression as a prognostic marker for survival in colorectal cancer. Jpn J Clin Oncol. 2009;39:595–600.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA, et al. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol. 2003;200:183–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Jayasinghe C, Simiantonaki N, Michel-Schmidt R, Kirkpatrick CJ. Endothelial VEGFR-3 expression in colorectal carcinomas is associated with hematogenous metastasis. Oncol Rep. 2009;22:1093–100.PubMedCrossRefGoogle Scholar
  35. 35.
    Alam A, Blanc I, Gueguen-Dorbes G, Duclos O, Bonnin J, Barron P, et al. SAR131675, a potent and selective VEGFR-3-TK inhibitor with antilymphangiogenic, antitumoral, and antimetastatic activities. Mol Cancer Ther. 2012;11:1637–49.PubMedCrossRefGoogle Scholar
  36. 36.
    Bates RC, Goldsmith JD, Bachelder RE, Brown C, Shibuya M, Oettgen P, et al. Flt-1-dependent survival characterizes the epithelial-mesenchymal transition of colonic organoids. Curr Biol. 2003;13:1721–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Quest AFG, Torres VA, Rodriguez DA, Gutierrez-Pajares J, Tapia JC. Caveolin-1 in colon cancer: the flexible connection to Wnt signaling. In: Mercier I, Jasmin J-F, Lisanti MPP, editors. Caveolins in cancer pathogenesis, prevention and therapy. New York: Springer; 2012. p. 17–41.CrossRefGoogle Scholar
  38. 38.
    Soreide K, Berg M, Skudal BS, Nedreboe BS. Advances in the understanding and treatment of colorectal cancer. Discov Med. 2011;12:393–404.PubMedGoogle Scholar
  39. 39.
    Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem. 1997;272:30429–38.PubMedCrossRefGoogle Scholar
  40. 40.
    Joshi B, Strugnell SS, Goetz JG, Kojic LD, Cox ME, Griffith OL, et al. Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res. 2008;68:8210–20.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Alexandros Garouniatis
    • 1
  • Adamantia Zizi-Sermpetzoglou
    • 2
  • Spyros Rizos
    • 3
  • Alkiviadis Kostakis
    • 4
  • Nikolaos Nikiteas
    • 4
  • Athanasios G. Papavassiliou
    • 5
  1. 1.Department of General Medicine“G. Gennimatas” General HospitalAthensGreece
  2. 2.Department of Pathology“Tzaneio” General HospitalAthensGreece
  3. 3.First Department of Surgery“Tzaneio” General HospitalAthensGreece
  4. 4.Second Department of Propaedeutic SurgeryUniversity of Athens Medical SchoolAthensGreece
  5. 5.Department of Biological ChemistryUniversity of Athens Medical SchoolAthensGreece

Personalised recommendations