Tumor Biology

, Volume 34, Issue 2, pp 1155–1160 | Cite as

RETRACTED ARTICLE: Comprehensive assessment of the association of ERCC2 Lys751Gln polymorphism with susceptibility to cutaneous melanoma

Research Article

Abstract

Previous studies evaluating the association between excision repair cross-complimentary group 2 (ERCC2) Lys751Gln polymorphism and susceptibility to cutaneous melanoma reported conflicting findings. We searched PubMed and Wangfang Medical databases up to October 16, 2012 to identify eligible studies. A total of 8 case–control studies including 3,492 cases and 5,381 controls were included in the meta-analysis. Statistical analysis was performed with Review Manage version 5.1. Odds ratios (ORs) with 95 % confidence intervals (95 %CIs) were used to assess the strength of the association. There was no obvious between-study heterogeneity among those eight studies under all four comparison models. Overall, there was a significant association between ERCC2 Lys751Gln polymorphism and susceptibility to cutaneous melanoma under three genetic models (for Gln versus Lys: OR = 1.08, 95 % CI = 1.01–1.15, P = 0.02; for GlnGln versus LysLys: OR = 1.16, 95 % CI = 1.01–1.33, P = 0.03; for GlnGln/LysGln versus LysLys: OR = 1.10, 95 % CI = 1.01–1.21, P = 0.04). Sensitivity analysis by omitting one study a time showed the significance of the pooled ORs was stable under all those three genetic models above. Therefore, the meta-analysis suggests that there is a significant association between ERCC2 Lys751Gln polymorphism and susceptibility to cutaneous melanoma.

Keywords

ERCC2 Polymorphism Cutaneous melanoma Meta-analysis 

Notes

Conflicts of interest

None

References

  1. 1.
    Thompson JF, Scolyer RA, Kefford RF. Cutaneous melanoma in the era of molecular profiling. Lancet. 2009;374:362–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Rigel DS, Russak J, Friedman R. The evolution of melanoma diagnosis: 25 years beyond the abcds. CA Cancer J Clin. 2010;60:301–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Kirkwood JM, Tarhini AA, Panelli MC, Moschos SJ, Zarour HM, Butterfield LH, et al. Next generation of immunotherapy for melanoma. J Clin Oncol. 2008;26:3445–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 2006;20:2149–82.CrossRefPubMedGoogle Scholar
  6. 6.
    Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature. 2012;491:449–53.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Diaz-Lagares A, Alegre E, Arroyo A, Gonzalez-Cao M, Zudaire ME, Viteri S, et al. Evaluation of multiple serum markers in advanced melanoma. Tumour Biol. 2011;32:1155–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Vizkeleti L, Ecsedi S, Rakosy Z, Orosz A, Lazar V, Emri G, et al. The role of ccnd1 alterations during the progression of cutaneous malignant melanoma. Tumour Biol. 2012;33:2189–99.CrossRefPubMedGoogle Scholar
  9. 9.
    Kumar A, Pant MC, Singh HS, Khandelwal S. Reduced expression of DNA repair genes (xrcc1, xpd, and ogg1) in squamous cell carcinoma of head and neck in north India. Tumour Biol. 2012;33:111–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Nar R, Bedir A, Alacam H, Kilinc V, Avci B, Salis O, et al. The effect of ouabain on mitochondrial DNA damage in hepg2 cell lines. Tumour Biol. 2012;33:2107–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Ransom M, Dennehey BK, Tyler JK. Chaperoning histones during DNA replication and repair. Cell. 2010;140:183–95.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer. 2011;11:467–80.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Benhamou S, Sarasin A. Ercc2/xpd gene polymorphisms and cancer risk. Mutagenesis. 2002;17:463–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang J, Zhang X, Yang H, Wang W. Polymorphisms of DNA repair genes: Adprt, xrcc1, and xpd and cancer risk in genetic epidemiology. Methods Mol Biol. 2009;471:305–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhong S, Nukui T, Buch S, Diergaarde B, Weissfeld LA, Grandis J, et al. Effects of ercc2 lys751gln (a35931c) and ccnd1 (g870a) polymorphism on outcome of advanced-stage squamous cell carcinoma of the head and neck are treatment dependent. Cancer Epidemiol Biomarkers Prev. 2011;20:2429–37.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xue H, Lu Y, Lin B, Chen J, Tang F, Huang G. The effect of xpd/ercc2 polymorphisms on gastric cancer risk among different ethnicities: a systematic review and meta-analysis. PLoS One. 2012;7:e43431.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Feng Z, Ni Y, Dong W, Shen H, Du J. Association of ercc2/xpd polymorphisms and interaction with tobacco smoking in lung cancer susceptibility: a systemic review and meta-analysis. Mol Biol Rep. 2012;39:57–69.CrossRefPubMedGoogle Scholar
  19. 19.
    Povey JE, Darakhshan F, Robertson K, Bisset Y, Mekky M, Rees J, et al. DNA repair gene polymorphisms and genetic predisposition to cutaneous melanoma. Carcinogenesis. 2007;28:1087–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Millikan RC, Hummer A, Begg C, Player J, de Cotret AR, Winkel S, et al. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the genes environment and melanoma study. Carcinogenesis. 2006;27:610–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Winsey SL, Haldar NA, Marsh HP, Bunce M, Marshall SE, Harris AL, et al. A variant within the DNA repair gene xrcc3 is associated with the development of melanoma skin cancer. Cancer Res. 2000;60:5612–6.PubMedGoogle Scholar
  22. 22.
    Li C, Hu Z, Liu Z, Wang LE, Strom SS, Gershenwald JE, et al. Polymorphisms in the DNA repair genes xpc, xpd, and xpg and risk of cutaneous melanoma: a case–control analysis. Cancer Epidemiol Biomarkers Prev. 2006;15:2526–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Han J, Colditz GA, Liu JS, Hunter DJ. Genetic variation in xpd, sun exposure, and risk of skin cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:1539–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Debniak T, Scott RJ, Huzarski T, Byrski T, Masojc B, van de Wetering T, et al. Xpd common variants and their association with melanoma and breast cancer risk. Breast Cancer Res Treat. 2006;98:209–15.CrossRefPubMedGoogle Scholar
  25. 25.
    Baccarelli A, Calista D, Minghetti P, Marinelli B, Albetti B, Tseng T, et al. Xpd gene polymorphism and host characteristics in the association with cutaneous malignant melanoma risk. Br J Cancer. 2004;90:497–502.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRefGoogle Scholar
  27. 27.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMedGoogle Scholar
  28. 28.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMedGoogle Scholar
  29. 29.
    Kertat K, Rosdahl I, Sun XF, Synnerstad I, Zhang H. The gln/gln genotype of xpd codon 751 as a genetic marker for melanoma risk and lys/gln as an important predictor for melanoma progression: A case control study in the Swedish population. Oncol Rep. 2008;20:179–83.PubMedGoogle Scholar
  30. 30.
    Romano E, Schwartz GK, Chapman PB, Wolchock JD, Carvajal RD. Treatment implications of the emerging molecular classification system for melanoma. Lancet Oncol. 2011;12:913–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Fecher LA, Cummings SD, Keefe MJ, Alani RM. Toward a molecular classification of melanoma. J Clin Oncol. 2007;25:1606–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M. Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev. 2010;20:239–44.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lindgren T, Stigbrand T, Riklund K, Johansson L, Eriksson D. Gene expression profiling in molt-4 cells during gamma-radiation-induced apoptosis. Tumour Biol. 2012;33:689–700.CrossRefPubMedGoogle Scholar
  34. 34.
    Wheless L, Kistner-Griffin E, Jorgensen TJ, Ruczinski I, Berthier-Schaad Y, Kessing B, et al. A community-based study of nucleotide excision repair polymorphisms in relation to the risk of non-melanoma skin cancer. J Invest Dermatol. 2012;132:1354–62.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cotignola J, Chou JF, Roy P, Mitra N, Busam K, Halpern AC, et al. Investigation of the effect of MDM2 SNP309 and TP53 Arg72Pro polymorphisms on the age of onset of cutaneous melanoma. J Invest Dermatol. 2012;132:1471–8.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  1. 1.Shandong University School of MedicineJinanChina
  2. 2.Department of Dermatology, Qilu HospitalShandong UniversityJinanChina

Personalised recommendations