Tumor Biology

, Volume 34, Issue 2, pp 953–961 | Cite as

VCP gene variation predicts outcome of advanced non-small-cell lung cancer platinum-based chemotherapy

  • J. Peng
  • L. X. Yang
  • X. Y. Zhao
  • Z. Q. Gao
  • J. Yang
  • W. T. Wu
  • H. J. Wang
  • J. C. Wang
  • J. Qian
  • H. Y. Chen
  • L. Jin
  • C. X. Bai
  • B. H. Han
  • W. M. WangEmail author
  • D. R. LuEmail author
Research Article


Valosin-containing protein (VCP), or p97, is a member of the ATP-binding protein family, and is involved in numerous cellular events, such as, protein degradation, membrane fusion, and chaperone activity. VCP has been demonstrated playing a critical role in non-small-cell lung cancer (NSCLC) pathogenesis and progression recently. We investigated the association between VCP polymorphisms and clinical outcome in advanced NSCLC patients undergoing platinum-based chemotherapy. We recruited 663 Chinese advanced NSCLC patients who were treated with platinum-based regimens, and using their clinical data, we assessed the efficacy and side effects of their treatment. Three tag-single nucleotide polymorphisms (SNPs) of VCP were genotyped. SNP rs2074549 showed a significant association with severe neutropenia. Its G/G genotype increased the risk of grade 3 or 4 neutropenia compared with wild-type homozygotes A/A (P = .001, odds ratio = 2.975). Haplotype association analysis revealed that CGA was associated with the increased incidence of severe neutropenia (P = .041, odds ratio = 1.439). However, no significant relationship was found between the presence of VCP polymorphisms and treatment efficacy when objective response, progression-free survival, and overall survival (OS) were evaluated. Our study is the first to provide evidence that VCP polymorphisms are associated with a severe chemotherapy-related adverse outcome in platinum-treated advanced NSCLC patients.


Non-small cell lung cancer Platinum-based chemotherapy Pharmacogenetics Single nucleotide polymorphism Valosin containing protein 



confidence interval


complete response


hazard ratios


linkage disequilibrium


non-small-cell lung cancer


odds ratios


overall survival


progressive disease


progression-free survival


partial response


performance stage


stable disease


single nucleotide polymorphisms




valosin-containing protein



This work was supported in part by the China National High-Tech Research and Development Program grant (2012AA02A517, 2012AA02A518), Shanghai Science and Technology Research Program (09JC1402200, 10410709100), and Scientific and Technological Support Plans from Jiangsu Province (BE2010715).

Conflicts of interest


Supplementary material

13277_2012_631_MOESM1_ESM.pdf (129 kb)
ESM 1 (PDF 129 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300. doi: 10.3322/caac.20073.PubMedCrossRefGoogle Scholar
  3. 3.
    Carney DN. Lung cancer—time to move on from chemotherapy. N Engl J Med. 2002;346(2):126–8. doi: 10.1056/NEJM200201103460211346/2/126.PubMedCrossRefGoogle Scholar
  4. 4.
    Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell. 2001;107(5):667–77.PubMedCrossRefGoogle Scholar
  5. 5.
    Latterich M, Frohlich KU, Schekman R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell. 1995;82(6):885–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, Mattaj IW. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol. 2001;3(12):1086–91. doi: 10.1038/ncb1201-1086ncb1201-1086.PubMedCrossRefGoogle Scholar
  7. 7.
    Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol. 2002;22(2):626–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Dai RM, Li CC. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol. 2001;3(8):740–4. doi: 10.1038/3508705635087056.PubMedCrossRefGoogle Scholar
  9. 9.
    Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377–81. doi: 10.1038/ng1332ng1332.PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–64. doi: 10.1016/j.neuron.2010.11.036.PubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto S, Tomita Y, Hoshida Y, Nagano H, Dono K, Umeshita K, et al. Increased expression of valosin-containing protein (p97) is associated with lymph node metastasis and prognosis of pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2004;11(2):165–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Yamamoto S, Tomita Y, Nakamori S, Hoshida Y, Nagano H, Dono K, et al. Elevated expression of valosin-containing protein (p97) in hepatocellular carcinoma is correlated with increased incidence of tumor recurrence. J Clin Oncol. 2003;21(3):447–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Lauten M, Schrauder A, Kardinal C, Harbott J, Welte K, Schlegelberger B, et al. Unsupervised proteome analysis of human leukaemia cells identifies the Valosin-containing protein as a putative marker for glucocorticoid resistance. Leukemia. 2006;20(5):820–6. doi: 10.1038/sj.leu.2404162.PubMedCrossRefGoogle Scholar
  14. 14.
    Tsujimoto Y, Tomita Y, Hoshida Y, Kono T, Oka T, Yamamoto S, et al. Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer. Clin Cancer Res. 2004;10(9):3007–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu W, Zhang W, Qiao R, Chen D, Wang H, Wang Y, et al. Association of XPD polymorphisms with severe toxicity in non-small cell lung cancer patients in a Chinese population. Clin Cancer Res. 2009;15(11):3889–95. doi: 10.1158/1078-0432.CCR-08-2715.PubMedCrossRefGoogle Scholar
  16. 16.
    Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004;74(1):106–20. doi: 10.1086/381000.PubMedCrossRefGoogle Scholar
  17. 17.
    Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet. 2003;73(5):1162–9. doi: 10.1086/379378.PubMedCrossRefGoogle Scholar
  18. 18.
    Djamshidian A, Schaefer J, Haubenberger D, Stogmann E, Zimprich F, Auff E, et al. A novel mutation in the VCP gene (G157R) in a German family with inclusion-body myopathy with Paget disease of bone and frontotemporal dementia. Muscle Nerve. 2009;39(3):389–91. doi: 10.1002/mus.21225.PubMedCrossRefGoogle Scholar
  19. 19.
    Haubenberger D, Bittner RE, Rauch-Shorny S, Zimprich F, Mannhalter C, Wagner L, et al. Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene. Neurology. 2005;65(8):1304–5. doi: 10.1212/01.wnl.0000180407.15369.92.PubMedCrossRefGoogle Scholar
  20. 20.
    Gidaro T, Modoni A, Sabatelli M, Tasca G, Broccolini A, Mirabella M. An Italian family with inclusion-body myopathy and frontotemporal dementia due to mutation in the VCP gene. Muscle Nerve. 2008;37(1):111–4. doi: 10.1002/mus.20890.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaleem M, Zhao A, Hamshere M, Myers AJ. Identification of a novel valosin-containing protein polymorphism in late-onset Alzheimer's disease. Neurodegener Dis. 2007;4(5):376–81. doi: 10.1159/000105158.PubMedCrossRefGoogle Scholar
  22. 22.
    Chan N, Le C, Shieh P, Mozaffar T, Khare M, Bronstein J, et al. Valosin-containing protein mutation and Parkinson's disease. Parkinsonism Relat Disord. 2011;18(1):107–9. doi: 10.1016/j.parkreldis.2011.07.006.PubMedCrossRefGoogle Scholar
  23. 23.
    Ward C, Chilvers ER, Lawson MF, Pryde JG, Fujihara S, Farrow SN, et al. NF-kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J Biol Chem. 1999;274(7):4309–18.PubMedCrossRefGoogle Scholar
  24. 24.
    Niwa M, Hara A, Kanamori Y, Hatakeyama D, Saio M, Takami T, et al. Nuclear factor-kappaB activates dual inhibition sites in the regulation of tumor necrosis factor-alpha-induced neutrophil apoptosis. Eur J Pharmacol. 2000;407(3):211–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Choi M, Rolle S, Wellner M, Cardoso MC, Scheidereit C, Luft FC, et al. Inhibition of NF-kappaB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood. 2003;102(6):2259–67. doi: 10.1182/blood-2002-09-2960.PubMedCrossRefGoogle Scholar
  26. 26.
    Arenzana-Seisdedos F, Thompson J, Rodriguez MS, Bachelerie F, Thomas D, Hay RT. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol. 1995;15(5):2689–96.PubMedGoogle Scholar
  27. 27.
    Nolan B, Collette H, Baker S, Duffy A, De M, Miller C, et al. Inhibition of neutrophil apoptosis after severe trauma is NFkappabeta dependent. J Trauma. 2000;48(4):599–604.PubMedCrossRefGoogle Scholar
  28. 28.
    Dai RM, Chen E, Longo DL, Gorbea CM, Li CC. Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J Biol Chem. 1998;273(6):3562–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Partridge JJ, Lopreiato Jr JO, Latterich M, Indig FE. DNA damage modulates nucleolar interaction of the Werner protein with the AAA ATPase p97/VCP. Mol Biol Cell. 2003;14(10):4221–9. doi: 10.1091/mbc.E03-02-0111E03-02-0111.PubMedCrossRefGoogle Scholar
  30. 30.
    Livingstone M, Ruan H, Weiner J, Clauser KR, Strack P, Jin S, et al. Valosin-containing protein phosphorylation at Ser784 in response to DNA damage. Cancer Res. 2005;65(17):7533–40. doi: 10.1158/0008-5472.CAN-04-3729.PubMedGoogle Scholar
  31. 31.
    Meerang M, Ritz D, Paliwal S, Garajova Z, Bosshard M, Mailand N, et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat Cell Biol. 2011;13(11):1376–82. doi: 10.1038/ncb2367ncb2367.PubMedCrossRefGoogle Scholar
  32. 32.
    Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther. 1987;34(2):155–66.PubMedCrossRefGoogle Scholar
  33. 33.
    van Kuilenburg AB, Meijer J, Mul AN, Meinsma R, Schmid V, Dobritzsch D, et al. Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum Genet. 2010;128(5):529–38. doi: 10.1007/s00439-010-0879-3.PubMedCrossRefGoogle Scholar
  34. 34.
    Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 2003;13(10):807–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen J, Hayes P, Roy K, Sirotnak FM. Two promoters regulate transcription of the mouse folylpolyglutamate synthetase gene three tightly clustered Sp1 sites within the first intron markedly enhance activity of promoter B. Gene. 2000;242(1–2):257–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Furger A, O'Sullivan JM, Binnie A, Lee BA, Proudfoot NJ. Promoter proximal splice sites enhance transcription. Genes Dev. 2002;16(21):2792–9. doi: 10.1101/gad.983602.PubMedCrossRefGoogle Scholar
  37. 37.
    Khrunin AV, Moisseev A, Gorbunova V, Limborska S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 2010;10(1):54–61. doi: 10.1038/tpj.2009.45.PubMedCrossRefGoogle Scholar
  38. 38.
    Suk R, Gurubhagavatula S, Park S, Zhou W, Su L, Lynch TJ, et al. Polymorphisms in ERCC1 and grade 3 or 4 toxicity in non-small cell lung cancer patients. Clin Cancer Res. 2005;11(4):1534–8. doi: 10.1158/1078-0432.CCR-04-1953.PubMedCrossRefGoogle Scholar
  39. 39.
    Xu X, Ren H, Zhou B, Zhao Y, Yuan R, Ma R, et al. Prediction of copper transport protein 1 (CTR1) genotype on severe cisplatin induced toxicity in non-small cell lung cancer (NSCLC) patients. Lung Cancer. 2012;77(2):438–42. doi: 10.1016/j.lungcan.2012.03.023S0169-5002(12)00134-1.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim HS, Kim MK, Chung HH, Kim JW, Park NH, Song YS, et al. Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study. Gynecol Oncol. 2009;113(2):264–9. doi: 10.1016/j.ygyno.2009.01.002.PubMedCrossRefGoogle Scholar
  41. 41.
    Gu S, Wu Q, Zhao X, Wu W, Gao Z, Tan X, et al. Association of CASP3 polymorphism with hematologic toxicity in patients with advanced non-small-cell lung carcinoma treated with platinum-based chemotherapy. Cancer Sci. 2012;103(8):1451–9. doi: 10.1111/j.1349-7006.2012.02323.x.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamamoto S, Tomita Y, Hoshida Y, Iizuka N, Monden M, Iuchi K, et al. Expression level of valosin-containing protein (p97) is correlated with progression and prognosis of non-small-cell lung carcinoma. Ann Surg Oncol. 2004;11(7):697–704. doi: 10.1245/ASO.2004.10.01811/7/697.PubMedCrossRefGoogle Scholar
  43. 43.
    Qiu Y, Morii E, Tomita Y, Zhang B, Matsumura A, Kitaichi M, et al. Prognostic significance of pre B cell leukemia transcription factor 2 (PBX2) expression in non-small cell lung carcinoma. Cancer Sci. 2009;100(7):1198–209. doi: 10.1111/j.1349-7006.2009.01156.x.PubMedCrossRefGoogle Scholar
  44. 44.
    Valle CW, Min T, Bodas M, Mazur S, Begum S, Tang D, et al. Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma. PLoS One. 2011;6(12):e29073. doi: 10.1371/journal.pone.0029073PONE-D-11-20457.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • J. Peng
    • 1
  • L. X. Yang
    • 2
  • X. Y. Zhao
    • 1
  • Z. Q. Gao
    • 3
  • J. Yang
    • 4
  • W. T. Wu
    • 1
  • H. J. Wang
    • 1
  • J. C. Wang
    • 1
  • J. Qian
    • 1
  • H. Y. Chen
    • 1
  • L. Jin
    • 1
  • C. X. Bai
    • 5
  • B. H. Han
    • 2
  • W. M. Wang
    • 6
    Email author
  • D. R. Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life SciencesFudan UniversityShanghaiChina
  2. 2.Department of Cardiothoracic Surgery, Changhai Hospital of ShanghaiSecond Military Medical UniversityShanghaiChina
  3. 3.Department of Respiratory Disease, Shanghai Chest HospitalShanghai Jiaotong UniversityShanghaiChina
  4. 4.Department of Toxicology, School of Public HealthHangzhou Normal UniversityHangzhouChina
  5. 5.Department of Pulmonary Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
  6. 6.Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine Technique, College of Life SciencesChina Jiliang UniversityHangzhouChina

Personalised recommendations