Advertisement

Tumor Biology

, Volume 34, Issue 1, pp 481–491 | Cite as

MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma

  • Martina Redova
  • Alexandr Poprach
  • Andrej Besse
  • Robert Iliev
  • Jana Nekvindova
  • Radek Lakomy
  • Lenka Radova
  • Marek Svoboda
  • Jan Dolezel
  • Rostislav Vyzula
  • Ondrej SlabyEmail author
Research Article

Abstract

Renal cell carcinoma (RCC) is the most common neoplasm of adult kidney accounting for about 3 % of adult malignancies. MicroRNAs (miRNAs) are a class of naturally occurring, short non-coding RNAs that regulate gene expression at the post-transcriptional level. We determined global miRNA expression profiles of RCC and parallel renal parenchyma tissues by using quantitative reverse transcriptase-polymerase chain reaction-based TaqMan low-density arrays. Afterward, we validated the difference in miR-210 expression levels on the larger group of RCC patients (35 RCC versus 10 non-tumorous parenchyma samples). Functional in vitro experiments were performed on ACHN and CAKI-2 RCC cell lines transfected with miRNA-210 inhibitor. Cell viability, apoptosis, cell cycle, scratch wound migration assay, and invasion assay (xCELLigence) were performed. We have identified original ccRCC-specific miRNA signature in clinical samples (73 miRNAs were significantly downregulated and five miRNAs upregulated (P < 0.003)). Increased expression levels of miR-210 in RCC tumor tissue were independently validated. We observed decreased viability of ACHN and CAKI-2 cells and accumulation of CAKI-2 in G2 phase of cell cycle after silencing of miR-210 expression. Downregulation of miR-210 also reduced the migratory and invasive potential of ACHN metastatic RCC cells. Moreover, we showed downregulation of HIF1a protein in both cell lines after miR-210 silencing indicating participation of miR-210 in hypoxic processes of RCC not only through regulation of its target mRNAs but also by indirect regulation of HIF1a. To our knowledge, this is the first report to show miR-210 regulatory effects on cell migration, invasive potential, and HIF1a protein in RCC cells.

Keywords

Renal cell carcinoma MicroRNA MiR-210 ACHN CAKI-2 Proliferation Invasiveness 

Notes

Acknowledgment

This work was supported by grant IGA NT/13547 of the Czech Ministry of Health, by Institutional Resources for Supporting the Research Organization provided by the Czech Ministry of Health in 2012 to Masaryk Memorial Cancer Institute, by The Ministry of Education, Youth and Sports for the project BBMRI CZ (LM2010004), and by the project “CEITEC–Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068).

Conflicts of interest

None.

References

  1. 1.
    Campbell SC, Novick AC, Bukowski RM. Renal tumors. In: Wein AJ, Kavoussi LR, Novick AC, et al., editors. Campbell-Wals Urology. 9th ed. Philadelphia: Saunders; 2007. p. 1567–637.Google Scholar
  2. 2.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Winter J, Diederichs S. MicroRNA biogenesis and cancer. Methods Mol Biol. 2011;676:3–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem. 2010;43:150–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol. 2008;216:418–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, et al. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res. 2010;29:90.PubMedCrossRefGoogle Scholar
  8. 8.
    Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, et al. MiR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7:255–64.PubMedCrossRefGoogle Scholar
  9. 9.
    White NM, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med. 2010;8:65.PubMedCrossRefGoogle Scholar
  10. 10.
    Reimers M, Carey VJ. Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol. 2006;411:119–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102.PubMedCrossRefGoogle Scholar
  12. 12.
    Redova M, Svoboda M, Slaby O. MicroRNAs and their target gene networks in renal cell carcinoma. Biochem Biophys Res Commun. 2011;405:153–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67:976–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One. 2010;5:e15224.PubMedCrossRefGoogle Scholar
  15. 15.
    Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World Urol. 2011;29:367–73.CrossRefGoogle Scholar
  16. 16.
    Song KH, Li T, Owsley E, Chiang JY. A putative role of micro RNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes. J Lipid Res. 2010;51:2223–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. 2011;310:160–9.PubMedGoogle Scholar
  18. 18.
    Gui J, Tian Y, Wen X, Zhang W, Zhang P, Gao J. Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin Sci (Lond). 2011;120:183–93.CrossRefGoogle Scholar
  19. 19.
    Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26:4148–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11:R27.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang Y, Dai Y, Yang J, Chen T, Yin Y, Tang M, et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol. 2009;35:1119–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Seliger B, Jasinski S, Dressler SP, Marincola FM, Recktenwald CV, Wang E, Lichtenfels R. Linkage of microRNA and proteome-based profiling data sets: a perspective for the priorization of candidate biomarkers in renal cell carcinoma? J Proteome Res. 2011;10:191–9.PubMedCrossRefGoogle Scholar
  23. 23.
    White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol. 2011;186:1077–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Valera VA, Walter BA, Linehan WM, Merino MJ. Regulatory effects of microRNA-92 (miR-92) on VHL gene expression and the hypoxic activation of miR-210 in clear cell renal cell carcinoma. J Cancer. 2011;2:515–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Chan SY, Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle. 2011;9:1072–83.CrossRefGoogle Scholar
  26. 26.
    Nakada C, Tsukamoto Y, Matsuura K, Nguyen TL, Hijiya N, Uchida T, et al. Overexpression of miR-210, a downstream target of HIF1α, causes centrosome amplification in renal carcinoma cells. J Pathol. 2011;224:280–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Rothé F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, et al. Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 2011;6:e20980.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8:2756–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J Biol Chem. 2008;283:15878–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Kelly TJ, Souza AL, Clish CB, Puigserver P. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol. 2011;31:2696–706.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Martina Redova
    • 1
    • 3
  • Alexandr Poprach
    • 1
  • Andrej Besse
    • 3
  • Robert Iliev
    • 3
  • Jana Nekvindova
    • 4
  • Radek Lakomy
    • 1
  • Lenka Radova
    • 5
  • Marek Svoboda
    • 1
  • Jan Dolezel
    • 2
  • Rostislav Vyzula
    • 1
  • Ondrej Slaby
    • 1
    • 3
    Email author
  1. 1.Department of Comprehensive Cancer CareMasaryk Memorial Cancer InstituteBrnoCzech Republic
  2. 2.Department of OncourologyMasaryk Memorial Cancer InstituteBrnoCzech Republic
  3. 3.Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
  4. 4.Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine and Faculty Hospital in Hradec KraloveCharles UniversityHradec KraloveCzech Republic
  5. 5.Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and DentistryPalacky University and Palacky University affiliated Hospital OlomoucBrnoCzech Republic

Personalised recommendations