Tumor Biology

, Volume 34, Issue 1, pp 455–462 | Cite as

The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers

  • Weijie Chen
  • Fengfeng Cai
  • Bei Zhang
  • Zeinab Barekati
  • Xiao Yan ZhongEmail author
Research Article


MicroRNAs (miRNAs) are a class of small noncoding RNAs whose expression changes are associated with cancer development and invasion. We hypothesized that miR-10b and miR-373, which are increased in lymphatic metastatic tissues, could be directly assayed in the plasma and used to detect the lymph node status of breast cancer patients. Between November 2009 and January 2012, 35 breast ductal carcinoma patients with lymph node metastasis (N patients), 25 ductal carcinoma patients without lymph node metastasis (N0 patients), and ten healthy female donors were enrolled in the study. Circulating miR-10b and miR-373 were determined in preoperative plasma samples by reverse transcription quantitative real-time PCR assay. In preliminary tests, the plasma levels of circulating miR-10b and miR-373 were found to be significantly higher in ten breast cancer patients with lymph node metastasis compared to ten N0 patients and ten normal donors (P < 0.01). On validation analysis, the median value level of miR-10b in the 35 N patients was 4.44-fold (P < 0.01) increased, and miR-373 was 4.38-fold (P < 0.01) increased in comparison to the 25 N0 patients. MiR-10b was used for differentiation of N patients from N0 patients; the odds ratio was 2.19, and the value of the area under the receiver-operating curve (AUC) was 0.80, with sensitivity of 71 % and specificity of 72 %. For miR-373, the odds ratio was 2.62, and the AUC was 0.84, with sensitivity of 68 % and specificity of 89 %. A combination of the two circulating miRNAs further enhanced the sensitivity to 72 % and the specificity to 94.3 %. Our data suggest that circulating miRNA-10b and miRNA-373 are potential biomarkers for detecting the lymph node status of breast cancer.


Breast cancer MicroRNA Plasma Biomarker 



This work was supported by the Swiss National Science Foundation (320030-124958/1).

Conflicts of interest



  1. 1.
    Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Kerin MJ. MicroRNAs as novel biomarkers for breast cancer. J Oncol. 2009;2009:950201. doi: 10.1155/2010/950201.PubMedGoogle Scholar
  2. 2.
    Darby S, McGale P, Correa C, Taylor C, Arriagada R, Clarke M, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16. doi: 10.1016/S0140-6736(11)61629-2.PubMedCrossRefGoogle Scholar
  3. 3.
    Wiatrek R, Kruper L. Sentinel lymph node biopsy indications and controversies in breast cancer. Maturitas. 2011;69(1):7–10. doi: 10.1016/j.maturitas.2011.02.006.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36. doi: 10.1056/NEJMoa062790.PubMedCrossRefGoogle Scholar
  5. 5.
    Taplin S, Abraham L, Barlow WE, Fenton JJ, Berns EA, Carney PA, et al. Mammography facility characteristics associated with interpretive accuracy of screening mammography. J Natl Cancer Inst. 2008;100(12):876–87. doi: 10.1093/jnci/djn172.PubMedCrossRefGoogle Scholar
  6. 6.
    Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71. doi: 10.1038/nature07242.PubMedCrossRefGoogle Scholar
  7. 7.
    Munker R, Calin GA. MicroRNA profiling in cancer. Clin Sci (Lond). 2011;121(4):141–58. doi: 10.1042/CS20110005.CrossRefGoogle Scholar
  8. 8.
    Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15(7):673–82. doi: 10.1634/theoncologist.2010-0103.PubMedCrossRefGoogle Scholar
  9. 9.
    Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137(6):1032–46. doi: 10.1016/j.cell.2009.03.047.PubMedCrossRefGoogle Scholar
  10. 10.
    Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28(22):6773–84. doi: 10.1128/MCB.00941-08.PubMedCrossRefGoogle Scholar
  11. 11.
    Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52. doi: 10.1038/nature06487.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10(2):202–10. doi: 10.1038/ncb1681.PubMedCrossRefGoogle Scholar
  13. 13.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8. doi: 10.1038/nature06174.PubMedCrossRefGoogle Scholar
  14. 14.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. doi: 10.1158/0008-5472.CAN-05-1783.PubMedCrossRefGoogle Scholar
  15. 15.
    Wei J, Gao W, Zhu CJ, Liu YQ, Mei Z, Cheng T, et al. Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer. 2011;30(6):407–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Morimura R, Nagata H, et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2011;105(1):104–11. doi: 10.1038/bjc.2011.198.PubMedCrossRefGoogle Scholar
  17. 17.
    Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96(5):644–7. doi: 10.1111/j.1651-2227.2006.00178.x.PubMedCrossRefGoogle Scholar
  18. 18.
    Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Petronella P, Scorzelli M, Benevento R, Corbisiero MC, Freda F, Canonico S. The sentinel lymph node: a suitable technique in breast cancer treatment? Ann Ital Chir. 2012;83(2):119–23.PubMedGoogle Scholar
  20. 20.
    Weir HK, Thun MJ, Hankey BF, Ries LA, Howe HL, Wingo PA, et al. Annual report to the nation on the status of cancer, 1975–2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst. 2003;95(17):1276–99.PubMedCrossRefGoogle Scholar
  21. 21.
    Yen TW, Hunt KK, Ross MI, Mirza NQ, Babiera GV, Meric-Bernstam F, et al. Predictors of invasive breast cancer in patients with an initial diagnosis of ductal carcinoma in situ: a guide to selective use of sentinel lymph node biopsy in management of ductal carcinoma in situ. J Am Coll Surg. 2005;200(4):516–26. doi: 10.1016/j.jamcollsurg.2004.11.012.PubMedCrossRefGoogle Scholar
  22. 22.
    Son BK, Bong JG, Park SH, Jeong YJ. Ductal carcinoma in situ and sentinel lymph node biopsy. J Breast Cancer. 2011;14(4):301–7. doi: 10.4048/jbc.2011.14.4.301.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao FL, Hu GD, Wang XF, Zhang XH, Zhang YK, Yu ZS. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res. 2012;40(3):859–66.PubMedGoogle Scholar
  24. 24.
    Roth C, Rack B, Muller V, Janni W, Pantel K, Schwarzenbach H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010;12(6):R90. doi: 10.1186/bcr2766.PubMedCrossRefGoogle Scholar
  25. 25.
    Fu SW, Chen L, Man YG. miRNA biomarkers in breast cancer detection and management. J Cancer. 2011;2:116–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Li Z, Gu X, Fang Y, Xiang J, Chen Z. MicroRNA expression profiles in human colorectal cancers with brain metastases. Oncol Lett. 2012;3(2):346–50. doi: 10.3892/ol.2011.497ol-03-02-0346.PubMedGoogle Scholar
  27. 27.
    Li QJ, Zhou L, Yang F, Wang GX, Zheng H, Wang DS et al. MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumour Biol. 2012. doi: 10.1007/s13277-012-0396-1.
  28. 28.
    Wu X, Weng L, Li X, Guo C, Pal SK, Jin JM, et al. Identification of a 4-microRNA signature for clear cell renal cell carcinoma metastasis and prognosis. PLoS One. 2012;7(5):e35661. doi: 10.1371/journal.pone.0035661PONE-D-11-19678.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang L, Alcon A, Yuan H, Ho J, Li QJ, Martins-Green M. Cellular and molecular mechanisms of pomegranate juice-induced anti-metastatic effect on prostate cancer cells. Integr Biol (Camb). 2011;3(7):742–54. doi: 10.1039/c0ib00122h.CrossRefGoogle Scholar
  30. 30.
    Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One. 2010;5(10):e13735. doi: 10.1371/journal.pone.0013735.PubMedCrossRefGoogle Scholar
  31. 31.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. doi: 10.1038/ncb1596.PubMedCrossRefGoogle Scholar
  32. 32.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33. doi: 10.1093/nar/gkr254.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28(6):655–61. doi: 10.1016/j.urolonc.2009.01.027.PubMedCrossRefGoogle Scholar
  34. 34.
    Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15(17):5473–7. doi: 1078-0432.CCR-09-0736.PubMedCrossRefGoogle Scholar
  35. 35.
    Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med. 2010;124(3):217–26. doi: 10.1007/s00414-009-0402-3.PubMedCrossRefGoogle Scholar
  36. 36.
    Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One. 2009;4(3):e4722. doi: 10.1371/journal.pone.0004722.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Weijie Chen
    • 1
  • Fengfeng Cai
    • 1
  • Bei Zhang
    • 1
  • Zeinab Barekati
    • 1
  • Xiao Yan Zhong
    • 1
    Email author
  1. 1.Laboratory for Gynecological Oncology, University Women’s Hospital, Department of BiomedicineUniversity of BaselBaselSwitzerland

Personalised recommendations