Tumor Biology

, Volume 34, Issue 1, pp 231–239 | Cite as

Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell

Research Article

Abstract

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a unique adaptor protein of the tumor necrosis factor receptor-associated factor family that mediates both tumor necrosis factor receptor and interleukin-1 receptor/Toll-like receptor signaling. A recent study showed that TRAF6 played an important role in tumorigenesis and invasion through activation of nuclear factor kappa B (NF-κB). However, the biological role of TRAF6 remains unknown in lung cancer up to now. To address the expression of TRAF6 in lung cancer cells, four lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D) and human bronchial epithelial cells were used to detect the expression of TRAF6 protein by western blotting. Results indicated that TRAF6 displayed an upregulation in human lung cancer cell lines. To investigate the effects of TRAF6 on the biological behavior of human lung adenocarcinoma cell, we generated human lung adenocarcinoma A549 cell line in which TRAF6 was depleted. The results showed that downregulation of TRAF6 could decrease cell viability, suppress cell proliferation and invasion, and promote cell apoptosis. At the same time, we explored the effects of TRAF6 on the expression of the following proteins: phosphor-NF-κB (p-p65), cyclin D1, caspase-3, and matrix metalloproteinase 9 (MMP9). Downregulation of TRAF6 could decrease the expression of p-p65, cyclin D1, and MMP9 and increase the expression of caspase-3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, and invasion of A549 cell line, as well as the inhibition of A549 cell apoptosis by the activation of NF-κB. To make a long story short, the overexpression of TRAF6 might be related to the tumorigenesis and invasion of lung cancer.

Keywords

TRAF6 Lung cancer Proliferation Apoptosis Invasion 

References

  1. 1.
    Salgia R, Hensing T, Campbell N, Salama AK, Maitland M, Hoffman P, et al. Personalized treatment of lung cancer. Semin Oncol. 2011;38(2):274–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Amann A, Corradi M, Mazzone P, Mutti A. Lung cancer biomarkers in exhaled breath. Expert Rev Mol Diagn. 2011;11(2):207–17.PubMedCrossRefGoogle Scholar
  3. 3.
    Shi X, Zhou S, Wang Z, Zhou Z. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008;59(2):155–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Giangreco A, Groot KR, Janes SM. Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med. 2007;175(6):547–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Miyoshi T, Satoh Y, Okumura S, Nakagawa K, Shirakusa T, Tsuchiya E, et al. Early-stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis. Am J Surg Pathol. 2003;27(1):101–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Mulla F, Bitar MS, Al-Maghrebi M, Behbehani AI, Al-Ali W, Rath O, et al. Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3beta. Cancer Res. 2011;71(4):1334–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Shek DT, Lee TY. Perceived parental control processes in Chinese adolescents: implications for positive youth development programs in Hong Kong. Int J Adolesc Med Health. 2006;18(3):505–19.PubMedGoogle Scholar
  8. 8.
    Park YC, Burkitt V, Villa AR, Tong L, Wu H. Structural basis for self-association and receptor recognition of human TRAF2. Nature. 1999;398(6727):533–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene. 2001;20(44):6482–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Wixted JH, Rothstein JL, Eisenlohr LC. Identification of functionally distinct TRAF proinflammatory and phosphatidylinositol 3-kinase/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (PI3K/MEK) transforming activities emanating from RET/PTC fusion oncoprotein. J Biol Chem. 2012;287(6):3691–703.PubMedCrossRefGoogle Scholar
  11. 11.
    Avila M, Martinez-Juarez A, Ibarra-Sanchez A, Gonzalez-Espinosa C. Lyn kinase controls TLR4-dependent IKK and MAPK activation modulating the activity of TRAF-6/TAK-1 protein complex in mast cells. Innate Immun. 2012. doi:10.1177/1753425911435265.
  12. 12.
    Inoue J, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res. 2000;254(1):14–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Ishida TK, Tojo T, Aoki T, Kobayashi N, Ohishi T, Watanabe T, et al. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc Natl Acad Sci USA. 1996;93(18):9437–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Ishida T, Mizushima S, Azuma S, Kobayashi N, Tojo T, Suzuki K, et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem. 1996;271(46):28745–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Xu LG, Li LY, Shu HB. TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J Biol Chem. 2004;279(17):17278–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Xu Y, Cheng G, Baltimore D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity. 1996;5(5):407–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Regnier CH, Tomasetto C, Moog-Lutz C, Chenard MP, Wendling C, Basset P, et al. Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem. 1995;270(43):25715–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell. 1994;78(4):681–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Pryhuber GS, Huyck HL, Staversky RJ, Finkelstein JN, O'Reilly MA. Tumor necrosis factor-alpha-induced lung cell expression of antiapoptotic genes TRAF1 and cIAP2. Am J Respir Cell Mol Biol. 2000;22(2):150–6.PubMedGoogle Scholar
  20. 20.
    Sylla BS, Hung SC, Davidson DM, Hatzivassiliou E, Malinin NL, Wallach D, et al. Epstein–Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-kappaB through a pathway that includes the NF-kappaB-inducing kinase and the IkappaB kinases IKKalpha and IKKbeta. Proc Natl Acad Sci USA. 1998;95(17):10106–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Yu X, Yi H, Guo C, Zuo D, Wang Y, Kim HL, et al. Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6. J Biol Chem. 2011;286(21):18795–806.PubMedCrossRefGoogle Scholar
  22. 22.
    Megas C, Hatzivassiliou EG, Yin Q, Marinopoulou E, Hadweh P, Vignali DA, et al. Mutational analysis of TRAF6 reveals a conserved functional role of the RING dimerization interface and a potentially necessary but insufficient role of RING-dependent TRAF6 polyubiquitination towards NF-kappaB activation. Cell Signal. 2011;23(5):772–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Rothe M, Sarma V, Dixit VM, Goeddel DV. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science. 1995;269(5229):1424–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Takeuchi M, Rothe M, Goeddel DV. Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins. J Biol Chem. 1996;271(33):19935–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Cheng G, Cleary AM, Ye ZS, Hong DI, Lederman S, Baltimore D. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science. 1995;267(5203):1494–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuchiya Y, Asano T, Nakayama K, Kato Jr T, Karin M, Kamata H. Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation. Mol Cell. 2010;39(4):570–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Tao T, Cheng C, Ji Y, Xu G, Zhang J, Zhang L, et al. Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Mol Biol Cell. 2012;23(14):2635–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Tran NL, McDonough WS, Savitch BA, Fortin SP, Winkles JA, Symons M, et al. Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res. 2006;66(19):9535–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Sarkar D, Park ES, Emdad L, Lee SG, Su ZZ, Fisher PB. Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer Res. 2008;68(5):1478–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Sung B, Pandey MK, Nakajima Y, Nishida H, Konishi T, Chaturvedi MM, et al. Identification of a novel blocker of IkappaBalpha kinase activation that enhances apoptosis and inhibits proliferation and invasion by suppressing nuclear factor-kappaB. Mol Cancer Ther. 2008;7(1):191–201.PubMedCrossRefGoogle Scholar
  31. 31.
    Ichikawa H, Takada Y, Murakami A, Aggarwal BB. Identification of a novel blocker of I kappa B alpha kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-kappa B-regulated gene products. J Immunol. 2005;174(11):7383–92.PubMedGoogle Scholar
  32. 32.
    Starczynowski DT, Lockwood WW, Delehouzee S, Chari R, Wegrzyn J, Fuller M, et al. TRAF6 is an amplified oncogene bridging the RAS and NF-kappaB pathways in human lung cancer. J Clin Invest. 2011;121(10):4095–105.PubMedCrossRefGoogle Scholar
  33. 33.
    Ramachandran C, Rodriguez S, Ramachandran R, Raveendran Nair PK, Fonseca H, Khatib Z, et al. Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res. 2005;25(5):3293–302.PubMedGoogle Scholar
  34. 34.
    Ma T, Wang N, Su Z, Chen L, Zhu N, Ma C, et al. Characterization of apoptosis and proliferation in esophageal carcinoma EC109 cells following siRNA-induced down-regulation of TRAF6. Mol Cell Biochem. 2011;352(1–2):77–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J. 2012;441(3):979–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer. 2010;46(12):2295–303.PubMedCrossRefGoogle Scholar
  37. 37.
    Ben-David D, Livne E, Reznick AZ. The involvement of oxidants and NF-kappaB in cytokine-induced MMP-9 synthesis by bone marrow-derived osteoprogenitor cells. Inflamm Res. 2012;61(7):673–88.PubMedCrossRefGoogle Scholar
  38. 38.
    Basu S, Rajakaruna S, Menko AS. Insulin-like growth factor receptor-1 and nuclear factor kappaB are crucial survival signals that regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem. 2012;287(11):8384–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang C, Chen Q, Hamajima Y, Sun W, Zheng YQ, Hu XH, et al. Id2 regulates the proliferation of squamous cell carcinoma in vitro via the NF-kappaB/cyclin D1 pathway. Chin J Cancer. 2012;31(9):430–9.PubMedGoogle Scholar
  40. 40.
    Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z, et al. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-kappa B-mediated MMP-9 upregulation. Stem Cells. 2012. doi:10.1002/stem.194.
  41. 41.
    Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, et al. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB. Nat Immunol. 2012;13(9):823–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Maruyama K, Kawagoe T, Kondo T, Akira S, Takeuchi O. TRAF family member-associated NF-kappaB activator (TANK) is a negative regulator of osteoclastogenesis and bone formation. J Biol Chem. 2012;287(34):29114–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhou F, Zhang X, van Dam H, Ten Dijke P, Huang H, Zhang L. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J Biol Chem. 2012;287(14):11002–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Hamidi A, von Bulow V, Hamidi R, Winssinger N, Barluenga S, Heldin CH, et al. Polyubiquitination of transforming growth factor beta (TGFbeta)-associated kinase 1 mediates nuclear factor-kappaB activation in response to different inflammatory stimuli. J Biol Chem. 2012;287(1):123–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Jin HR, Jin SZ, Cai XF, Li D, Wu X, Nan JX, et al. Cryptopleurine targets NF-kappaB pathway, leading to inhibition of gene products associated with cell survival, proliferation, invasion, and angiogenesis. PLoS One. 2012;7(6):e40355.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu YQ, Hu XY, Lu T, Cheng YN, Young CY, Yuan HQ, et al. Retigeric acid B exhibits antitumor activity through suppression of nuclear factor-kappaB signaling in prostate cancer cells in vitro and in vivo. PLoS One. 2012;7(5):e38000.PubMedCrossRefGoogle Scholar
  47. 47.
    Kang K, Lim JS. Induction of functional changes of dendritic cells by silica nanoparticles. Immune Netw. 2012;12(3):104–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Prasad S, Yadav VR, Sung B, Reuter S, Kannappan R, Deorukhkar A, et al. Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine. Clin Cancer Res. 2012;18(18):4942–53.PubMedCrossRefGoogle Scholar
  49. 49.
    Ge Y, Xu Y, Sun W, Man Z, Zhu L, Xia X, et al. The molecular mechanisms of the effect of dexamethasone and cyclosporin A on TLR4 /NF-kappaB signaling pathway activation in oral lichen planus. Gene. 2012;508(2):157–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Chaudhry SI, Hooper S, Nye E, Williamson P, Harrington K, Sahai E. Autocrine IL-1beta-TRAF6 signalling promotes squamous cell carcinoma invasion through paracrine TNFalpha signalling to carcinoma-associated fibroblasts. Oncogene. 2012. doi:10.1038/onc.2012.91onc201291.
  51. 51.
    Liu H, Tamashiro S, Baritaki S, Penichet M, Yu Y, Chen H, et al. TRAF6 Activation in multiple myeloma: a potential therapeutic target. Clin Lymphoma Myeloma Leuk. 2012;12(3):155–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Meng Q, Zheng M, Liu H, Song C, Zhang W, Yan J, et al. TRAF6 regulates proliferation, apoptosis, and invasion of osteosarcoma cell. Mol Cell Biochem. 2012. doi:10.1007/s11010-012-1434-4.
  53. 53.
    Wang SJ, Sun B, Pan SH, Chen H, Kong R, Li J, et al. Experimental study of the function and mechanism combining dihydroartemisinin and gemcitabine in treating pancreatic cancer. Zhonghua Wai Ke Za Zhi. 2010;48(7):530–4.PubMedGoogle Scholar
  54. 54.
    Wang YW, Wang SJ, Zhou YN, Pan SH, Sun B. Escin augments the efficacy of gemcitabine through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in pancreatic cancer both in vitro and in vivo. J Cancer Res Clin Oncol. 2012;138(5):785–97.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang C, Chen Q, Hamajima Y, Sun W, Zheng YQ, Hu XH, et al. Id2 regulates the proliferation of squamous cell carcinoma in vitro via the NF-kappa B/Cyclin D1 pathway. Chin J Cancer. 2012;31(9):430–9.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  1. 1.Department of Thoracic SurgeryAffiliated Hospital of Nantong UniversityNantongPeople’s Republic of China

Personalised recommendations