Tumor Biology

, Volume 33, Issue 6, pp 2401–2409 | Cite as

Predictive value of immunogenic cell death biomarkers HMGB1, sRAGE, and DNase in liver cancer patients receiving transarterial chemoembolization therapy

  • Nikolaus Kohles
  • Dorothea Nagel
  • Dietrich Jüngst
  • Petra Stieber
  • Stefan HoldenriederEmail author
Research Article


Transarterial chemoembolization (TACE) therapy is an effective locoregional anticancer treatment for liver cancer patients. Serum biomarkers involved in immunogenic cell death may be valuable for early predicting therapy response and estimating prognosis. Sera of 50 prospectively and consecutively included hepatocellular carcinoma (HCC) patients, undergoing TACE therapy, were taken before and 24 h after TACE application. In these samples, soluble biomarkers involved in immunogenic cell death, and among them, high-mobility group box 1 (HMGB1), soluble receptor of advanced glycation end products (sRAGE), and DNase activity were measured. They were compared with radiological response to therapy. A total of 71 TACE therapies were evaluated, of which 32 were classified as “no progression,” and 39, as “progression.” While HMGB1 levels increased already 24 h after TACE, there was an early decrease of sRAGE and DNase activity. Pretherapeutic and 24-h values of sRAGE were significantly higher in the no progression group than those in the progression group. There was no difference with respect to treatment response for DNase and HMGB1. Soluble RAGE is a new parameter with predictive relevance in primary liver cancer patients undergoing TACE therapy.


Hepatocellular cancer Transarterial chemoembolization Immunogenic cell death HMGB1 RAGE DNase 



We are very grateful for the committed support of Prof. Jüngst who died recently. We thank Dr. Waggershauser from the Institute of Radiology of the University Hospital Munich for the excellent technical assistance in the evaluation of CT and MRI imaging.

Conflicts of interest



  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94:153–6.PubMedCrossRefGoogle Scholar
  2. 2.
    El-Serag HB, Rudolph L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterol. 2007;132:2557–76.CrossRefGoogle Scholar
  3. 3.
    Jepsen P, Vilstrup H, Tarone RE, Friis S, Sorensen HT. Incidence rates of hepatocellular carcinoma in the US and Denmark: recent trends. Int J Cancer. 2007;121:1624–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Yuan JM, Govindarajan S, Arakawa K, Yu MC. Synergism of alcohol, diabetes, and viral hepatitis on the risk of hepatocellular carcinoma in blacks and whites in the US. Cancer. 2004;101:1009–17.PubMedCrossRefGoogle Scholar
  5. 5.
    El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterol. 2008;134:1752–63.CrossRefGoogle Scholar
  6. 6.
    Forner A, Hessheimer AJ, Real MI, Bruix J. Treatment of hepatocellular carcinoma. Crit Rev Oncol Hematol. 2006;60:89–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoffe SE, Finkelstein SE, Russel MS, Shridhar S. Nonsurgical options for hepatocellular carcinoma: evolving role of external beam radiotherapy. Cancer Control. 2010;17:100–10.PubMedGoogle Scholar
  8. 8.
    Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatol. 2003;37:429–42.CrossRefGoogle Scholar
  9. 9.
    Takayasu K, Arii S, Ikao I, Omata M, Okita K, Ichida T, Matsuyama Y, Nakanuma Y, Kojiro M, Makuuchi M, Yamaoka Y. Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients. Gastroenterol. 2006;131:461–9.CrossRefGoogle Scholar
  10. 10.
    Bruix JSM, Llovet JM. Chemoembolization for hepatocellular carcinoma. Gastroenterol. 2004;127:179–88.CrossRefGoogle Scholar
  11. 11.
    Lim HS, Jeong YY, Kang HK, Kim JK, Park JG. Imaging features of hepatocellular carcinoma after transcatheter arterial chemoembolization and radiofrequency ablation. Am J Roentgenol. 2006;187:W341–9.CrossRefGoogle Scholar
  12. 12.
    Takayasu K, Arii S, Matsuo N, Yoshikawa M, Ryu M, Takasaki K, Sato M, Yamanaka N, Shimamura Y, Ohto M. Comparison of CT findings with resected specimens after chemoembolization with iodized oil for hepatocellular carcinoma. Am J Roentgenol. 2000;175:699–704.Google Scholar
  13. 13.
    Thabet A, Kalva S, Gervais DA. Percutaneous image-guided therapy of intra-abdominal malignancy: imaging evaluation of treatment response. Abdom Imaging. 2009;34:593–609.PubMedCrossRefGoogle Scholar
  14. 14.
    Beachy SH, Repasky EA. Using extracellular biomarkers for monitoring efficacy of therapeutics in cancer patients: an update. Cancer Immunol Immunother. 2008;57:759–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Holdenrieder S, Stieber P. Apoptotic markers in cancer. Clin Biochem. 2004;37:605–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes. Crit Rev Lab Med Sci. 2009;46:1–24.CrossRefGoogle Scholar
  17. 17.
    Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88.PubMedCrossRefGoogle Scholar
  18. 18.
    Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, Seidel D. Circulating nucleosomes predict the response to chemotherapy in patients with advanced non small cell lung cancer. Clin Cancer Res. 2004;10:5981–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, Seidel D. Early and specific prediction of the therapeutic efficacy in lung cancer by nucleosomal DNA and cytokeratin 19 fragments. Ann N Y Acad Sci. 2006;1075:244–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Kohles N, Nagel D, Jungst D, Durner J, Stieber P, Holdenrieder S. Relevance of circulating nucleosomes and oncological biomarkers for predicting response to transarterial chemoembolization therapy in liver cancer patients. BMC Cancer. 2011;11:202.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang JH, Xu M. Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol. 2002;12:84–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Bianchi ME. HMGB1 loves company. J Leukocyte Biol. 2009;86:573–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA, Kalden JR, Schett G, et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med. 2008;205:3007–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G. Molecular characteristics of immunogenic cancer cell death. Cell Death Diff. 2008;15:3–12.CrossRefGoogle Scholar
  26. 26.
    Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, et al. High mobility group box 1 protein interacts with multiple toll-like receptors. Am J Physiol Cell Physiol. 2006;290:917–24.CrossRefGoogle Scholar
  27. 27.
    Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, Zitvogel L, Kroemer G. Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis. 2009;14:364–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Apetoh L, Tesniere A, Ghiringhelli F, Kroemer G, Zitvogel L. Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res. 2008;68:4026–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, Stroncek D, Lim JB. Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med. 2009;7:38.PubMedCrossRefGoogle Scholar
  31. 31.
    Naumnik W, Nilklińska W, Ossolińska M, Chyczewska E. Serum levels of HMGB1, survivin, and VEGF in patients with advanced non-small cell lung cancer during chemotherapy. Folia Histochem Cytobiol. 2009;47:703–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8:59–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Tang DL, Kang R, Zeh HJ, Lotze MT. High-mobility group box 1 and cancer. Biochim Biophys Acta. 2010;1799:131–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Jiao L, Weinstein SJ, Albanes D, Taylor PR, Graubard BI, Virtamo J, Stolzenberg-Solomon RZ. Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: a prospective study. Cancer Res. 2011;71:3582–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Stötzer OJ, Fersching DIM, Salat C, Siegele B, Nagel D, Holdenrieder S. Prediction of response to neoadjuvant chemotherapy in breast cancer patients by circulating soluble HMGB1 and RAGE. Tumor Biol. 2012 (in press)Google Scholar
  36. 36.
    Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologica. 2009;52:2251–63.CrossRefGoogle Scholar
  37. 37.
    Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT. RAGE, RAGE ligands, and their role in cancer and inflammation. J Translat Med. 2010;7:17.CrossRefGoogle Scholar
  38. 38.
    Geroldi D, Falcone C, Emanuele E. Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target. Curr Med Chem. 2006;13:1971–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, Christensen E, Pagliaro L, Colombo M, Rodes J. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL Conference. J Hepatol. 2001;35:421–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG. New guidelines to evaluate the response to treatment in solid Tumors. J Natl Cancer Inst. 2000;92:205–16.PubMedCrossRefGoogle Scholar
  41. 41.
    Lehner J, Wittwer C, Fersching D, Siegele B, Holdenrieder S, Stoetzer OJ. Methodical and preanalytical evaluation of an HMGB1 immunoassay. Anticancer Res. 2012;32:2059–62.PubMedGoogle Scholar
  42. 42.
    Wittwer C, Lehner J, Fersching D, Siegele B, Stoetzer OJ, Holdenrieder S. Methodical and preanalytical evaluation of a RAGE immunoassay. Anticancer Res. 2012;32:2075–8.PubMedGoogle Scholar
  43. 43.
    Ikai I, Arii S, Kojiro M, Ichida T, Makuuchi M, Matsuyama Y, Nakanuma Y, Okita K, Omata M, Takayasu K, Yamaoka Y. Reevaluation of prognostic factors for survival after liver resection in patients with hepatocellular carcinoma in a Japanese nationwide survey. Cancer. 2004;101:796–802.PubMedCrossRefGoogle Scholar
  44. 44.
    Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterol. 2011;140:1410–26.CrossRefGoogle Scholar
  45. 45.
    LE Georgiades CS, Frangakis C, Park JU, Kim HW, Hong K, Geschwind JF. Prognostic accuracy of 12 liver staging systems in patients with unresectable hepatocellular carcinoma treated with transarterial chemoembolization. J Vasc Interv Radiol. 2006;17:1619–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Patel PS, Patel BP, Rawal RM, Raval GN, Patel MM, Patel JB, Jha FP, Patel DD. Evaluation of serum alkaline DNase activity in treatment monitoring of head and neck cancer patients. Tumor Biol. 2000;21:82–9.CrossRefGoogle Scholar
  47. 47.
    Holdenrieder S, Stieber P, Bodenmueller H, Busch M, Fertig G, Fuerst H, Schalhorn A, Schmeller N, Untch M, Seidel D. Nucleosomes in serum of patients with benign and malignant diseases. Int J Cancer. 2001;95:114–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Kuroi K, Tanaka C, Toi M. Clinical significance of plasma nucleosomes levels in cancer patients. Int J Oncol. 2001;19:143–8.PubMedGoogle Scholar
  49. 49.
    Kohles N, Nagel D, Jüngst D, Durner J, Stieber P, Holdenrieder S. Prognostic value of apoptotic and oncological biomarkers in liver cancer patients undergoing transarterial chemoembolisation therapy. Tumor Biol. 2012;33:33–40.CrossRefGoogle Scholar
  50. 50.
    Shang GH, Jia CQ, Tian H, Xiao W, Li Y, Wang AH, Dong L, Lin DJ. Serum high mobility group box protein 1 as a clinical marker for non-small cell lung cancer. Respirat Med. 2009;103:1949–53.CrossRefGoogle Scholar
  51. 51.
    Cheng BQ, Jia CQ, Liu CT, Lu XE, Zhong N, Zhang ZL, Fan W, Li YQ. Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Digest Liver Dis. 2008;40:446–52.CrossRefGoogle Scholar
  52. 52.
    Kostova N, Zlateva S, Ugrinova I, Pasheva E. The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem. 2010;337:251–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Hiwatashi K, Ueno S, Abeyama K, Kubo F, Sakoda M, Maruyama I, Hamanoue M, Natsugoe S, Aikou T. A novel function of the receptor for advanced glycation end-products (RAGE) in association with tumorigenesis and tumor differentiation of HCC. Annals Surg Oncol. 2008;15:923–33.CrossRefGoogle Scholar
  54. 54.
    Giglia JL, Antonia SJ, Berk LB, Bruno S, Dessureault S, Finkelstein SE. Systemic therapy for advanced hepatocellular carcinoma: past, present, and future. Cancer Control. 2010;17:120–9.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Nikolaus Kohles
    • 1
    • 2
  • Dorothea Nagel
    • 1
  • Dietrich Jüngst
    • 3
  • Petra Stieber
    • 1
  • Stefan Holdenrieder
    • 1
    • 4
    Email author
  1. 1.Institute of Clinical ChemistryUniversity-Hospital Munich-GrosshadernMunichGermany
  2. 2.Department of Otorhinolaryngology, Helios-Klinikum ErfurtErfurtGermany
  3. 3.Medical Clinic IIUniversity-Hospital Munich-GrosshadernMunichGermany
  4. 4.Institute of Clinical Chemistry and Clinical PharmacologyUniversity-Hospital BonnBonnGermany

Personalised recommendations