Tumor Biology

, Volume 33, Issue 5, pp 1265–1274 | Cite as

Environmental factors in causing human cancers: emphasis on tumorigenesis

  • Umesh T. Sankpal
  • Hima Pius
  • Moeez Khan
  • Mohammed I. Shukoor
  • Pius Maliakal
  • Chris M. Lee
  • Maen Abdelrahim
  • Sarah F. Connelly
  • Riyaz Basha
Review

Abstract

The environment and dietary factors play an essential role in the etiology of cancer. Environmental component is implicated in ~80 % of all cancers; however, the causes for certain cancers are still unknown. The potential players associated with various cancers include chemicals, heavy metals, diet, radiation, and smoking. Lifestyle habits such as smoking and alcohol consumption, exposure to certain chemicals (e.g., polycyclic aromatic hydrocarbons, organochlorines), metals and pesticides also pose risk in causing human cancers. Several studies indicated a strong association of lung cancer with the exposure to tobacco products and asbestos. The contribution of excessive sunlight, radiation, occupational exposure (e.g., painting, coal, and certain metals) is also well established in cancer. Smoking, excessive alcohol intake, consumption of an unhealthy diet, and lack of physical activity can act as risk factors for cancer and also impact the prognosis. Even though the environmental disposition is linked to cancer, the level and duration of carcinogen-exposure and associated cellular and biochemical aspects determine the actual risk. Modulations in metabolism and DNA adduct formation are considered central mechanisms in environmental carcinogenesis. This review describes the major environmental contributors in causing cancer with an emphasis on molecular aspects associated with environmental disposition in carcinogenesis.

Keywords

Environmental factors Carcinogenesis Nicotine Polycyclic aromatic hydrocarbons 

Notes

Acknowledgments

Authors greatly appreciate the financial and technical support provided by the MD Anderson Cancer Center Orlando's Cancer Research Institute.

Conflicts of interest

None

References

  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Printz C. Research continues into best ways to treat low-risk prostate cancer. Cancer. 2009;115:4431–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Hecht SS. Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg. 2006;391:603–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Maneckjee R, Minna JD. Opioids induce while nicotine suppresses apoptosis in human lung cancer cells. Cell Growth Differ. 1994;5:1033–40.PubMedGoogle Scholar
  5. 5.
    Hecht SS, Hochalter JB, Villalta PW, Murphy SE. 2′-hydroxylation of nicotine by cytochrome p450 2a6 and human liver microsomes: formation of a lung carcinogen precursor. Proc Natl Acad Sci USA. 2000;97:12493–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Miller YE. Pathogenesis of lung cancer: 100 year report. Am J Respir Cell Mol Biol. 2005;33:216–23.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol. 2004;14:433–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, et al. An nqo1- and parp-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci USA. 2007;104:11832–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(adp-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res. 2007;13:3033–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Minna JD. Nicotine exposure and bronchial epithelial cell nicotinic acetylcholine receptor expression in the pathogenesis of lung cancer. J Clin Invest. 2003;111:31–3.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating xiap and survivin. Proc Natl Acad Sci USA. 2006;103:6332–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ozlu T, Bulbul Y. Smoking and lung cancer. Tuberk Toraks. 2005;53:200–9.PubMedGoogle Scholar
  14. 14.
    Chen J, Jiang R, Garces YI, Jatoi A, Stoddard SM, Sun Z, et al. Prognostic factors for limited-stage small cell lung cancer: a study of 284 patients. Lung Cancer. 2009;67(2):221–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ebbert JO, Williams BA, Sun Z, Aubry MC, Wampfler JA, Garces YI, et al. Duration of smoking abstinence as a predictor for non-small-cell lung cancer survival in women. Lung Cancer. 2005;47:165–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Ebbert JO, Yang P, Vachon CM, Vierkant RA, Cerhan JR, Folsom AR, et al. Lung cancer risk reduction after smoking cessation: observations from a prospective cohort of women. J Clin Oncol. 2003;21:921–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Walker MS, Vidrine DJ, Gritz ER, Larsen RJ, Yan Y, Govindan R, et al. Smoking relapse during the first year after treatment for early-stage non-small-cell lung cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:2370–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas P, Rubinstein L. Cancer recurrence after resection: T1 n0 non-small cell lung cancer. Lung cancer study group. Ann Thorac Surg. 1990;49:242–6. discussion 246–247.PubMedCrossRefGoogle Scholar
  19. 19.
    Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, et al. Tobacco components stimulate AKT-dependent proliferation and NFKAPPAB-dependent survival in lung cancer cells. Carcinogenesis. 2005;26:1182–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Browman GP, Wong G, Hodson I, Sathya J, Russell R, McAlpine L, et al. Influence of cigarette smoking on the efficacy of radiation therapy in head and neck cancer. N Engl J Med. 1993;328:159–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnston-Early A, Cohen MH, Minna JD, Paxton LM, Fossieck Jr BE, Ihde DC, et al. Smoking abstinence and small cell lung cancer survival. An association. JAMA. 1980;244:2175–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Videtic GM, Stitt LW, Dar AR, Kocha WI, Tomiak AT, Truong PT, et al. Continued cigarette smoking by patients receiving concurrent chemoradiotherapy for limited-stage small-cell lung cancer is associated with decreased survival. J Clin Oncol. 2003;21:1544–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Schuller HM, Plummer 3rd HK, Jull BA. Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat Rec A Discov Mol Cell Evol Biol. 2003;270:51–8.PubMedCrossRefGoogle Scholar
  24. 24.
    West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, et al. Rapid AKT activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest. 2003;111:81–90.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    West KA, Linnoila IR, Belinsky SA, Harris CC, Dennis PA. Tobacco carcinogen-induced cellular transformation increases activation of the phosphatidylinositol 3′-kinase/AKT pathway in vitro and in vivo. Cancer Res. 2004;64:446–51.PubMedCrossRefGoogle Scholar
  26. 26.
    West KA, Linnoila IR, Brognard J, Belinsky S, Harris C, Dennis PA. Tobacco carcinogen-induced cellular transformation increases AKT activation in vitro and in vivo. Chest. 2004;125:101S–2S.PubMedCrossRefGoogle Scholar
  27. 27.
    Ye YN, Liu ES, Shin VY, Wu WK, Luo JC, Cho CH. Nicotine promoted colon cancer growth via epidermal growth factor receptor, C-SRC, and 5-lipoxygenase-mediated signal pathway. J Pharmacol Exp Ther. 2004;308:66–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion and epithelial–mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124:36–45.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dasgupta P, Chellappan SP. Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle. 2006;5:2324–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Davis R, Rizwani W, Banerjee S, Kovacs M, Haura E, Coppola D, et al. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS One. 2009;4:e7524.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.PubMedCrossRefGoogle Scholar
  32. 32.
    Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E, et al. Nicotine induces cell proliferation by beta-arrestin-mediated activation of SRC and RB-RAF-1 pathways. J Clin Invest. 2006;116:2208–17.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mazza R, Lina M, Boffi R, Invernizzi G, De Marco C, Pierotti M. Taking care of smoker patients: a review and some recommendations. Annals of Oncology. 2010;21(7):1404–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Cook MB, Kamangar F, Whiteman DC, Freedman ND, Gammon MD, Bernstein L, et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the International Beacon Consortium. J Natl Cancer Inst. 2010;102:1344–53.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shitara K, Matsuo K, Hatooka S, Ura T, Takahari D, Yokota T, et al. Heavy smoking history interacts with chemoradiotherapy for esophageal cancer prognosis: a retrospective study. Cancer Sci. 2010;101:1001–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Kogevinas M. Human health effects of dioxins: cancer, reproductive and endocrine system effects. Hum Reprod Update. 2001;7:331–9.PubMedCrossRefGoogle Scholar
  37. 37.
    IARC working group on the evaluation of carcinogenic risks to humans. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. Lyon, France, 4–11 February 1997. IARC Monogr Eval Carcinog Risks Hum. 1997;69:1–631.Google Scholar
  38. 38.
    Giri AK. Mutagenic and genotoxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a review. Mutat Res. 1986;168:241–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Huff JE, Salmon AG, Hooper NK, Zeise L. Long-term carcinogenesis studies on 2,3,7,8-tetrachlorodibenzo-p-dioxin and hexachlorodibenzo-p-dioxins. Cell Biol Toxicol. 1991;7:67–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Knerr S, Schrenk D. Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Mol Nutr Food Res. 2006;50:897–907.PubMedCrossRefGoogle Scholar
  41. 41.
    Michalek JE, Tripathi RC. Pharmacokinetics of TCDD in veterans of operation ranch hand: 15-year follow-up. J Toxicol Environ Health A. 1999;57:369–78.PubMedCrossRefGoogle Scholar
  42. 42.
    Jenkins S, Rowell C, Wang J, Lamartiniere CA. Prenatal TCDD exposure predisposes for mammary cancer in rats. Reprod Toxicol. 2007;23:391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Floret N, Mauny F, Challier B, Cahn JY, Tourneux F, Viel JF. Dioxin emissions and soft-tissue sarcoma: results of a population-based case–control study. Rev Epidemiol Sante Publique. 2004;52:213–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Viel JF, Arveux P, Baverel J, Cahn JY. Soft-tissue sarcoma and non-Hodgkin's lymphoma clusters around a municipal solid waste incinerator with high dioxin emission levels. Am J Epidemiol. 2000;152:13–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Denison MS, Pandini A, Nagy SR, Baldwin EP, Bonati L. Ligand binding and activation of the ah receptor. Chem Biol Interact. 2002;141:3–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Carver LA, Bradfield CA. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J Biol Chem. 1997;272:11452–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen HS, Perdew GH. Subunit composition of the heteromeric cytosolic aryl hydrocarbon receptor complex. J Biol Chem. 1994;269:27554–8.PubMedGoogle Scholar
  48. 48.
    Baccarelli A, Pesatori AC, Masten SA, Patterson Jr DG, Needham LL, Mocarelli P, et al. Aryl-hydrocarbon receptor-dependent pathway and toxic effects of TCDD in humans: a population-based study in Seveso, Italy. Toxicol Lett. 2004;149:287–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Geter DR, Chang LW, Hanley NM, Ross MK, Pegram RA, DeAngelo AB. Analysis of in vivo and in vitro DNA strand breaks from trihalomethane exposure. J Carcinog. 2004;3:2.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Villanueva CM, Fernandez F, Malats N, Grimalt JO, Kogevinas M. Meta-analysis of studies on individual consumption of chlorinated drinking water and bladder cancer. J Epidemiol Community Health. 2003;57:166–73.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cantor KP, Lynch CF, Hildesheim ME, Dosemeci M, Lubin J, Alavanja M, et al. Drinking water source and chlorination byproducts. I. Risk of bladder cancer. Epidemiology. 1998;9:21–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Hildesheim ME, Cantor KP, Lynch CF, Dosemeci M, Lubin J, Alavanja M, et al. Drinking water source and chlorination byproducts. II. Risk of colon and rectal cancers. Epidemiology. 1998;9:29–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Kasim K, Levallois P, Johnson KC, Abdous B, Auger P. Chlorination disinfection by-products in drinking water and the risk of adult leukemia in Canada. Am J Epidemiol. 2006;163:116–26.PubMedCrossRefGoogle Scholar
  54. 54.
    King WD, Marrett LD, Woolcott CG. Case–control study of colon and rectal cancers and chlorination by-products in treated water. Cancer Epidemiol Biomarkers Prev. 2000;9:813–8.PubMedGoogle Scholar
  55. 55.
    Lioy PJ, Greenberg A. Factors associated with human exposures to polycyclic aromatic hydrocarbons. Toxicol Ind Health. 1990;6:209–23.PubMedGoogle Scholar
  56. 56.
    Waldman JM, Lioy PJ, Greenberg A, Butler JP. Analysis of human exposure to benzo(a)pyrene via inhalation and food ingestion in the total human environmental exposure study (THEES). J Expo Anal Environ Epidemiol. 1991;1:193–225.PubMedGoogle Scholar
  57. 57.
    Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8:444–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Gammon MD, Santella RM. PAH, genetic susceptibility and breast cancer risk: an update from the long island breast cancer study project. Eur J Cancer. 2008;44:636–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Plaskon LA, Penson DF, Vaughan TL, Stanford JL. Cigarette smoking and risk of prostate cancer in middle-aged men. Cancer Epidemiol Biomarkers Prev. 2003;12:604–9.PubMedGoogle Scholar
  60. 60.
    Kooiman GG, Martin FL, Williams JA, Grover PL, Phillips DH, Muir GH. The influence of dietary and environmental factors on prostate cancer risk. Prostate Cancer Prostatic Dis. 2000;3:256–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Seidler A, Heiskel H, Bickeboller R, Elsner G. Association between diesel exposure at work and prostate cancer. Scand J Work Environ Health. 1998;24:486–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Cavalieri EL, Rogan EG, Li KM, Todorovic R, Ariese F, Jankowiak R, et al. Identification and quantification of the depurinating DNA adducts formed in mouse skin treated with dibenzo[a, l]pyrene (db[a, l]p) or its metabolites and in rat mammary gland treated with db[a, l]p. Chem Res Toxicol. 2005;18:976–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes memorial lecture. Cancer Res. 1982;42:4875–917.PubMedGoogle Scholar
  64. 64.
    Jiang H, Shen YM, Quinn AM, Penning TM. Competing roles of cytochrome p450 1a1/1b1 and aldo-keto reductase 1a1 in the metabolic activation of (+/−)-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene in human bronchoalveolar cell extracts. Chem Res Toxicol. 2005;18:365–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Gammon MD, Sagiv SK, Eng SM, Shantakumar S, Gaudet MM, Teitelbaum SL, et al. Polycyclic aromatic hydrocarbon-DNA adducts and breast cancer: a pooled analysis. Arch Environ Health. 2004;59:640–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 2003;3:733–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA. Environmental and chemical carcinogenesis. Semin Cancer Biol. 2004;14:473–86.PubMedCrossRefGoogle Scholar
  68. 68.
    Pelkonen O, Nebert DW. Metabolism of polycyclic aromatic hydrocarbons: etiologic role in carcinogenesis. Pharmacol Rev. 1982;34:189–222.PubMedGoogle Scholar
  69. 69.
    Hatsukami DK, Benowitz NL, Rennard SI, Oncken C, Hecht SS. Biomarkers to assess the utility of potential reduced exposure tobacco products. Nicotine Tob Res. 2006;8:600–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Hecht SS, Carmella SG, Yoder A, Chen M, Li ZZ, Le C, et al. Comparison of polymorphisms in genes involved in polycyclic aromatic hydrocarbon metabolism with urinary phenanthrene metabolite ratios in smokers. Cancer Epidemiol Biomarkers Prev. 2006;15:1805–11.PubMedCrossRefGoogle Scholar
  71. 71.
    Kuljukka-Rabb T, Nylund L, Vaaranrinta R, Savela K, Mutanen P, Veidebaum T, et al. The effect of relevant genotypes on PAH exposure-related biomarkers. J Expo Anal Environ Epidemiol. 2002;12:81–91.PubMedCrossRefGoogle Scholar
  72. 72.
    Cancer IAfRo. Polynuclear aromatic hydrocarbons, part 2, carbon blacks, mineral oils (lubricant base oils and derived products) and some nitroarenes. IARC Monogr Eval Carcinog Risk Chem Hum. 1984;33:1–222.Google Scholar
  73. 73.
    Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncol. 2005;6:931–2.PubMedCrossRefGoogle Scholar
  74. 74.
    3rd Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287:1132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dockery DW, 3rd Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993;329:1753–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Brown SK. Volatile organic pollutants in new and established buildings in Melbourne, Australia. Indoor Air. 2002;12:55–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Guo H, Lee SC, Chan LY, Li WM. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res. 2004;94:57–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Shah JJ, Singh HB. Distribution of volatile organic chemicals in outdoor and indoor air: a National VOCs data base. Environ Sci Technol. 1988;22:1381–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Hodgson AT, Rudd AF, Beal D, Chandra S. Volatile organic compound concentrations and emission rates in new manufactured and site-built houses. Indoor Air. 2000;10:178–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum 2006;88:1–478.Google Scholar
  81. 81.
    Hansen J, Olsen JH. Formaldehyde and cancer morbidity among male employees in Denmark. Cancer Causes Control. 1995;6:354–60.PubMedCrossRefGoogle Scholar
  82. 82.
    Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from solid cancers among workers in formaldehyde industries. Am J Epidemiol. 2004;159:1117–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Stellman SD, Demers PA, Colin D, Boffetta P. Cancer mortality and wood dust exposure among participants in the American Cancer Society Cancer Prevention Study-II (CPS-II). Am J Ind Med. 1998;34:229–37.PubMedCrossRefGoogle Scholar
  84. 84.
    Bolt HM. Experimental toxicology of formaldehyde. J Cancer Res Clin Oncol. 1987;113:305–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Casanova M, Morgan KT, Gross EA, Moss OR, Heck HA. DNA-protein cross-links and cell replication at specific sites in the nose of F344 rats exposed subchronically to formaldehyde. Fundam Appl Toxicol. 1994;23:525–36.PubMedCrossRefGoogle Scholar
  86. 86.
    Im H, Oh E, Mun J, Khim JY, Lee E, Kang HS, et al. Evaluation of toxicological monitoring markers using proteomic analysis in rats exposed to formaldehyde. J Proteome Res. 2006;5:1354–66.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang B, Liu DD. Detection of formaldehyde induced developmental toxicity assessed with single cell gel electrophoresis. Fen Zi Xi Bao Sheng Wu Xue Bao. 2006;39:462–6.PubMedGoogle Scholar
  88. 88.
    Dallas CE, Scott MJ, Ward Jr JB, Theiss JC. Cytogenetic analysis of pulmonary lavage and bone marrow cells of rats after repeated formaldehyde inhalation. J Appl Toxicol. 1992;12:199–203.PubMedCrossRefGoogle Scholar
  89. 89.
    Kitaeva LV, Kitaev EM, Pimenova MN. The cytopathic and cytogenetic sequelae of chronic inhalational exposure to formaldehyde on female germ cells and bone marrow cells in rats. Tsitologiia. 1990;32:1212–6.PubMedGoogle Scholar
  90. 90.
    Zhang L, Tang X, Rothman N, Vermeulen R, Ji Z, Shen M, et al. Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol Biomarkers Prev. 2010;19:80–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hayes RB, Yin SN, Dosemeci M, Li GL, Wacholder S, Travis LB, et al. Benzene and the dose-related incidence of hematologic neoplasms in China. Chinese Academy of Preventive Medicine—National Cancer Institute Benzene Study Group. J Natl Cancer Inst. 1997;89:1065–71.PubMedCrossRefGoogle Scholar
  92. 92.
    Powley MW, Carlson GP. Cytochromes p450 involved with benzene metabolism in hepatic and pulmonary microsomes. J Biochem Mol Toxicol. 2000;14:303–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Beach J, Burstyn I. Cancer risk in benzene exposed workers. Occup Environ Med. 2006;63:71–2.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Mehlman MA. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industries. Part XXX: causal relationship between chronic myelogenous leukemia and benzene-containing solvents. Ann N Y Acad Sci. 2006;1076:110–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Vlaanderen J, Lan Q, Kromhout H, Rothman N, Vermeulen R. Occupational benzene exposure and the risk of lymphoma subtypes: a meta-analysis of cohort studies incorporating three study quality dimensions. Environ Health Perspect. 2011;119:159–67.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Costantini AS, Gorini G, Consonni D, Miligi L, Giovannetti L, Quinn M. Exposure to benzene and risk of breast cancer among shoe factory workers in Italy. Tumori. 2009;95:8–12.PubMedGoogle Scholar
  97. 97.
    Bassil KL, Vakil C, Sanborn M, Cole DC, Kaur JS, Kerr KJ. Cancer health effects of pesticides: systematic review. Can Fam Physician. 2007;53:1704–11.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Dich J, Zahm SH, Hanberg A, Adami HO. Pesticides and cancer. Cancer Causes Control. 1997;8:420–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Eriksson M, Hardell L, Carlberg M, Akerman M. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int J Cancer. 2008;123:1657–63.PubMedCrossRefGoogle Scholar
  100. 100.
    Samanic CM, De Roos AJ, Stewart PA, Rajaraman P, Waters MA, Inskip PD. Occupational exposure to pesticides and risk of adult brain tumors. Am J Epidemiol. 2008;167:976–85.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Van Maele-Fabry G, Libotte V, Willems J, Lison D. Review and meta-analysis of risk estimates for prostate cancer in pesticide manufacturing workers. Cancer Causes Control. 2006;17:353–73.PubMedCrossRefGoogle Scholar
  102. 102.
    Koutros S, Alavanja MC, Lubin JH, Sandler DP, Hoppin JA, Lynch CF, et al. An update of cancer incidence in the agricultural health study. J Occup Environ Med. 2010;52:1098–105.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hayes RB. The carcinogenicity of metals in humans. Cancer Cause Control. 1997;8:371–85.CrossRefGoogle Scholar
  104. 104.
    Hamilton JW, Kaltreider RC, Bajenova OV, Ihnat MA, McCaffrey J, Turpie BW, et al. Molecular basis for effects of carcinogenic heavy metals on inducible gene expression. Environ Health Perspect. 1998;106:1005–15.Google Scholar
  105. 105.
    Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens--part C: metals, arsenic, dusts, and fibres. Lancet Oncol. 2009;10:453–4.Google Scholar
  106. 106.
    Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci. 2011;123:305–32.Google Scholar
  107. 107.
    Kapaj S, Peterson H, Liber K, Bhattacharya P. Human health effects from chronic arsenic poisoning--a review. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41:2399–428.Google Scholar
  108. 108.
    Paterson RR, Lima N. Toxicology of mycotoxins. EXS. 2010;100:31–63.Google Scholar
  109. 109.
    Meggs WJ. Epidemics of mold poisoning past and present. Toxicol Ind Health. 2009;25:571–6.Google Scholar
  110. 110.
    Kensler TW, Roebuck BD, Wogan GN, Groopman JD. Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol Sci. 2011;120:S28–48.Google Scholar
  111. 111.
    Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis. 2010;31:71–82Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Umesh T. Sankpal
    • 1
  • Hima Pius
    • 1
    • 2
  • Moeez Khan
    • 1
    • 3
  • Mohammed I. Shukoor
    • 1
  • Pius Maliakal
    • 1
    • 2
  • Chris M. Lee
    • 1
  • Maen Abdelrahim
    • 1
    • 4
  • Sarah F. Connelly
    • 1
  • Riyaz Basha
    • 1
    • 2
    • 3
  1. 1.Cancer Research InstituteMD Anderson Cancer Center OrlandoOrlandoUSA
  2. 2.College of MedicineFlorida State UniversityOrlandoUSA
  3. 3.College of MedicineUniversity of Central FloridaOrlandoUSA
  4. 4.Texas A&M Health Science CenterCollege of MedicineCollege StationUSA

Personalised recommendations