Advertisement

Tumor Biology

, Volume 33, Issue 3, pp 653–659 | Cite as

Potential for clinical radionuclide-based imaging and therapy of common cancers expressing EGFR-family receptors

Research Article

Abstract

High expression of epidermal growth factor receptor (EGFR)-family receptors, especially EGFR, HER2, and HER3, makes them interesting for targeted radionuclide-based imaging and therapy of disseminated cancer. The expression in some commonly occurring cancers such as breast, prostate, colorectal, and urinary bladder cancers is summarized. Possible strategies for radionuclide-based imaging and therapy are briefly discussed, especially in relation to the receptor expression in metastases.

Keywords

EGFR HER2 HER3 HER4 Imaging Metastasis Radionuclide Receptors Therapy 

Notes

Acknowledgments

Financial support from the Swedish Cancer Society, grant 0980-B06-19XBC, and Vinnova, grant 2004-02159, for research related to the content of this article is acknowledged.

Conflicts of interest

None.

References

  1. 1.
    Sharkey RM, Goldenberg DM. Cancer radioimmunotherapy. Immunotherapy. 2011;3(3):349–70. Review.PubMedCrossRefGoogle Scholar
  2. 2.
    Carlsson J. EGFR-family expression and implications for targeted radionuclide therapy. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy, biological aspects. Berlin: Springer; 2008. p. 25–58. ISBN 978-1-4020-8695-3. Chapter 3.CrossRefGoogle Scholar
  3. 3.
    McGill MA, McGlade CJ. Cellular signaling. In: Tannock IF, Hill RP, Bristow RC, Harrington L, editors. The basic science of oncology. New York: McGraw-Hill Medical Publishing Division; 2004. p. 142–66. ISBN-13: 978-0-07-138774-3, Chapter 8.Google Scholar
  4. 4.
    Pecorino L. Molecular biology of cancer. Mechanisms, targets and therapeutics. Oxford: Oxford University Press; 2005. ISBN 0-19-926472-4Google Scholar
  5. 5.
    Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57. Review.PubMedCrossRefGoogle Scholar
  6. 6.
    Garrett CR, Eng C. Cetuximab in the treatment of patients with colorectal cancer. Expert Opin Biol Ther. 2011;11(49):937. Review.PubMedCrossRefGoogle Scholar
  7. 7.
    Xu Y, Zhang Y, Ma S. EGFR inhibitors with concurrent thoracic radiation therapy for locally advanced non-small cell lung cancer. Lung Cancer. 2011;73(3):249–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Ahn ER, Vogel CL. Dual HER2-targeted approaches in HER2-positive breast cancer. Breast Cancer Res Treat. 2011 Sep 29. doi: 10.1007/s10549-011-1781-y
  9. 9.
    Mukai H. Treatment strategy for HER2-positive breast cancer. Int J Clin Oncol. 2010;15(4):335–40. Review.PubMedCrossRefGoogle Scholar
  10. 10.
    Chang HR. Trastuzumab-based neoadjuvant therapy in patients with HER2-positive breast cancer. Cancer. 2010;116(12):2856–67. Review.PubMedCrossRefGoogle Scholar
  11. 11.
    Avraham R, Yarden Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol. 2011;12(2):104–17. Review.PubMedCrossRefGoogle Scholar
  12. 12.
    Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol. 2007;19(2):124–34. Review.PubMedCrossRefGoogle Scholar
  14. 14.
    Kedrin D, Wyckoff J, Boimel PJ, Coniglio SJ, Hynes NE, Arteaga CL, et al. ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasation. Clin Cancer Res. 2009;15(11):3733–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12(18):5268–72. Review.PubMedCrossRefGoogle Scholar
  17. 17.
    Gusterson B, Cowley G, Smith JA, Ozanne B. Cellular localisation of human epidermal growth factor receptor. Cell Biol Int Rep. 1984;8:649–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Damjanov I, Mildner B, Knowles BB. Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues. Lab Invest. 1986;55:588–92.PubMedGoogle Scholar
  19. 19.
    Natali PG, Nicotra MR, Bigotti A, Venturo I, Slamon DJ, Fendly BM, et al. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer. 1990;45:457–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5:953–62.PubMedGoogle Scholar
  21. 21.
    Wei Q, Chen L, Sheng L, Nordgren H, Wester K, Carlsson J. EGFR, HER2 and HER3 expression in esophageal primary tumours and corresponding metastases. Int J Oncol. 2007;31:493–9.PubMedGoogle Scholar
  22. 22.
    Kountourakis P, Pavlakis K, Psyrri A, Rontogianni D, Xiros N, Patsouris E, et al. Prognostic significance of HER3 and HER4 protein expression in colorectal adenocarcinomas. BMC Cancer. 2006;6:46.PubMedCrossRefGoogle Scholar
  23. 23.
    Gullick WJ. The c-erbB3/HER3 receptor in human cancer. Cancer Surv. 1996;27:339–49.PubMedGoogle Scholar
  24. 24.
    Houssami N, Macaskill P, Balleine RL, Bilous M, Pegram MD. HER2 discordance between primary breast cancer and its paired metastasis: tumor biology or test artefact? Insights through meta-analysis. Breast Cancer Res Treat. 2011;129(3):659–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, et al. HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer. 2004;90:2344–8.PubMedGoogle Scholar
  26. 26.
    Baselga J, Perez EA, Pienkowski T, Bell R. Adjuvant trastuzumab: a milestone in the treatment of HER-2-positive early breast cancer. Oncologist. 2006;11(1):4–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26(25):3637–43.PubMedCrossRefGoogle Scholar
  28. 28.
    LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res. 2011;17(20):6437–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Tovey SM, Witton CJ, Bartlett JM, Stanton PD, Reeves JR, Cooke TG. Outcome and human epidermal growth factor receptor (HER)1-4 status in invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine labelling. Breast Cancer Res. 2004;6(3):R246–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Milenic DE, Garmestani K, Brady ED, Albert PS, Abdulla A, Flynn J, et al. Potentiation of high-LET radiation by gemcitabine: targeting HER2 with trastuzumab to treat disseminated peritoneal disease. Clin Cancer Res. 2007;13(6):1926–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Persson M, Gedda L, Lundqvist H, Tolmachev V, Nordgren H, Malmstrom PU, et al. [177Lu]pertuzumab: experimental therapy of HER-2-expressing xenografts. Cancer Res. 2007;67(1):326–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2 positive microxenografts using a 177Lu-labeled HER2-specific affibody molecule. Cancer Res. 2007;67(6):2773–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim SJ, Uehara H, Karashima T, Shepherd DL, Killion JJ, Fidler IJ. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res. 2003;9(3):1200–10.PubMedGoogle Scholar
  34. 34.
    Liu HL, Gandour-Edwards R, Lara Jr PN, de Vere White R, LaSalle JM. Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J. 2001;7(5):395–403.PubMedGoogle Scholar
  35. 35.
    Hernes E, Fossa SD, Berner A, Otnes B, Nesland JM. Expression of the epidermal growth factor receptor family in prostate carcinoma before and during androgen-independence. Br J Cancer. 2004;90(2):449–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Solit DB, Rosen N. Targeting HER2 in prostate cancer: where to next? J Clin Oncol. 2007;25(3):241–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Beaven AW, Goldberg RM. Adjuvant therapy for colorectal cancer: yesterday, today, and tomorrow. Oncology (Williston Park). 2006;20(5):461–9. Review.Google Scholar
  38. 38.
    Wei Q, Shui Y, Zheng S, Wester K, Nordgren H, Nygren P, et al. EGFR, HER2 and HER3 expression in primary colorectal carcinomas and corresponding metastases: Implications for targeted radionuclide therapy. Oncol Rep. 2011;25(1):3–11.PubMedGoogle Scholar
  39. 39.
    Knosel T, Petersen S, Schwabe H, Schluns K, Stein U, Schlag PM, et al. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch. 2002;440(2):187–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee JC, Wang ST, Chow NH, Yang HB. Investigation of the prognostic value of coexpressed erbB family members for the survival of colorectal cancer patients after curative surgery. Eur J Cancer. 2002;38(8):1065–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Gardmark T, Wester K, De la Torre M, Carlsson J, Malmstrom PU. Analysis of HER2 expression in primary urinary bladder carcinoma and corresponding metastases. BJU Int. 2005;95(7):982–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Wester K, Sjostrom A, de la Torre M, Carlsson J, Malmstrom PU. HER-2–a possible target for therapy of metastatic urinary bladder carcinoma. Acta Oncol. 2002;41:282–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Rotterud R, Nesland JM, Berner A, Fossa SD. Expression of the epidermal growth factor receptor family in normal and malignant urothelium. BJU Int. 2005;95(9):1344–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Memon AA, Sorensen BS, Meldgaard P, Fokdal L, Thykjaer T, Nexo E. The relation between survival and expression of HER1 and HER2 depends on the expression of HER3 and HER4: a study in bladder cancer patients. Br J Cancer. 2006;94:1703–9.PubMedGoogle Scholar
  45. 45.
    Friess H, Fukuda A, Tang WH, Eichenberger A, Furlan N, Zimmermann A, et al. Concomitant analysis of the epidermal growth factor receptor family in esophageal cancer: overexpression of epidermal growth factor receptor mRNA but not of c-erbB-2 and c erbB-3. World J Surg. 1999;23:1010–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Akamatsu M, Matsumoto T, Oka K, Yamasaki S, Sonoue H, Kajiyama Y, et al. c-erbB-2 oncoprotein expression related to chemoradioresistance in esophageal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2003;57:1323–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Wei Q, Sheng L, Shui Y, Hu Q, Nordgren H, Carlsson J. EGFR, HER2, and HER3 expression in laryngeal primary tumors and corresponding metastases. Ann Surg Oncol. 2008;15(4):1193–201.PubMedCrossRefGoogle Scholar
  48. 48.
    Frejd YF. Novel alternative scaffolds and their potential use for tumor targeted radionuclide therapy. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy, biological aspects. Berlin: Springer; 2008. p. 89–116. ISBN 978-1-4020-8695-3. Chapter 6.CrossRefGoogle Scholar
  49. 49.
    Govindan SV, Goldenberg DM. New antibody conjugates in cancer therapy. Scientific World Journal. 2010;10:2070–89. Review.PubMedCrossRefGoogle Scholar
  50. 50.
    Stigbrand T, Carlsson J, Adams GP. Developmental trends in targeted radionuclide therapy—biological aspects. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy, biological aspects. Berlin: Springer; 2008. p. 387–97. ISBN 978-1-4020-8695-3. Chapter 21.CrossRefGoogle Scholar
  51. 51.
    Reilly RM. The radiochemistry of monoclonal antibodies and peptides. In: Rielly RM, editor. Monoclonal antibody and peptide-targeted radiotherapy of cancer. New York: Wiley; 2010. p. 39–100. ISBN 978-0-470-24372-5. Chapter 2.CrossRefGoogle Scholar
  52. 52.
    Thomadsen B, Erwin W, Mourtada F. The physics and radiobiology of targeted radionuclide therapy. In: Speer TW, editor. targeted radionuclide therapy. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 71–87. ISBN 978-0-7817-9693-4. Chapter 6.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  1. 1.Unit of Biomedical Radiation Sciences, Department of Radiology, Oncology and Radiation Science, Rudbeck LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations