Tumor Biology

, Volume 33, Issue 2, pp 561–569

Detection of circulating tumor cells and tumor stem cells in patients with breast cancer by using flow cytometry

A valuable tool for diagnosis and prognosis evaluation
Research Article


Circulating tumor stem cells (CTSC), a subpopulation of circulating tumor cells (CTC), may lead to recurrent diseases. The aim of this study was to detect CTC (CD45EpCAM+) and CTSC (CD45EpCAM+CD44+CD24) of breast cancer (BC) patients, as well as to explore their clinical relevance. CTC and CTSC in peripheral blood (PB) of 45 female BC patients were detected by using flow cytometry (FCM). SKBR-3 cells were mixed with MNC of four healthy volunteers at different ratios in order to evaluate the sensitivity of FCM. Real-time quantitative polymerase chain reaction (QRT-PCR) was conducted and compared with FCM. The expression of EPCAM between CTC < 50 and CTC ≥ 50 groups (19.98 ± 23.93 versus 29.46 ± 29.27 × 10−5), and the expression of CD44 between CTSC negative and positive groups (0.85 ± 0.91 versus 0.81 ± 0.75) were statistically the same. FCM had higher specificity than QRT-PCR. Statistical differences were obtained between CTC < 50 and CTC ≥ 50 groups among different TNM stages, histology stages, estrogen receptor (ER) status and progesterone receptor (PR) status (P < 0.05). Statistical differences between CTSC negative and positive groups within different TNM stages and regional lymph node metastasis (RLNM) status (P < 0.05) were also obtained. Moreover, the percentage of CTC on CD45 negative cells (CD45C) among different clinical pathology was statistically different, P = 0.000. Additionally, the percentage of CTSC on CD45C with TNM stage was rising (0: 0.00 ± 0.00‰, I: 0.03 ± 0.05‰, II: 0.06 ± 0.14‰, III: 0.10 ± 0.09‰, IV: 0.29 ± 0.35‰, P = 0.034). Statistical difference in the percentage of CTSC on CD45C among different RLNM status (P = 0.001) was also obtained. FCM to detect CTC and CTSC may be used to diagnose disease at early stage, to guide clinical therapy or to predict prognosis.


Breast cancer Circulating tumor cells Circulating tumor stem cells Flow cytometry 


  1. 1.
    Pisani P, Bray F, Parkin DM. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer vol. 2002;97(1):72–81. doi:10.1002/ijc.1571.CrossRefGoogle Scholar
  2. 2.
    Gao YT, Shu XO, Kushi LH, et al. Association of menstrual and reproductive factors with breast cancer risk: results from the Shanghai breast cancer study. Int J Cancer. 2000;87:295–300. doi:10.1002/1097-0215(20000715)87.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang L, Wang Y, Liu Y, et al. Flow cytometric analysis of CK19 expression in the peripheral blood of breast carcinoma patients: relevance for circulating tumor cell detection. J Exp Clin Cancer Res. 2009;28:57. doi:10.1186/1756-9966-28-57.PubMedCrossRefGoogle Scholar
  4. 4.
    Cristofanilli M (2009) The biological information obtainable from circulating tumor cells. Breast 18(Suppl3):S38–S40. doi:10.1016/S0960-9776(09)70270-X Google Scholar
  5. 5.
    Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumor cells. Nat Rev Cancer. 2008;8:329–40. doi:10.1038/nrc2375.PubMedCrossRefGoogle Scholar
  6. 6.
    Husemann Y, Geigl JB, Schubert F, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13:58–68. doi:10.1016/j.ccr.2007.12.003.PubMedCrossRefGoogle Scholar
  7. 7.
    Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359:366–77. doi:10.1056/NEJMoa0800668.PubMedCrossRefGoogle Scholar
  8. 8.
    Nagrath S, Sequist LV, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–39. doi:10.1038/nature06385.PubMedCrossRefGoogle Scholar
  9. 9.
    Hunter K. Host genetics influence tumor metastasis. Nat Rev Cancer. 2006;6(2):141–46. doi:10.1038/nrc1803.PubMedCrossRefGoogle Scholar
  10. 10.
    Sieuwerts AM, Kraan J, Blot J, et al. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst. 2009;101:61–6. doi:10.1093/jnci/djn419.PubMedGoogle Scholar
  11. 11.
    Pachmann K, Heiss P, Demel U, et al. Detection and quantification of small numbers of circulating tumour cells in peripheral blood using laser scanning cytometer (LSC). Clin Chem Lab Med. 2001;39:811–17. doi:10.1515/CCLM.2001.134, September 2001.PubMedCrossRefGoogle Scholar
  12. 12.
    Goodale D, Phay C, Postenka CO, et al. Characterization of tumor cell dissemination patterns in preclinical models of cancer metastasis using flow cytometry and laser scanning cytometry. Cytometry A. 2009;75(4):344–55. doi:10.1002/cyto.a.20657.PubMedGoogle Scholar
  13. 13.
    Cristofanilli M, Budd GT, Ellis MJ, et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl Med 351(8):781–91. http://www.nejm.org/doi/pdf/10.1056/NEJMoa040766
  14. 14.
    Saldova R, Reuben JM, Abd Hamid UM, et al. Levels of specific serum N-glycans identify breast cancer patients with higher circulating tumor counts. Ann Oncol. 2011;22(5):1113–9. doi:10.1093/annonc/mdq570.PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–88. doi:10.1073/pnas.0530291100.PubMedCrossRefGoogle Scholar
  16. 16.
    Sringl J. Detection and analysis of mammary gland stem cells. J Pathol. 2009;217(2):229–41. doi:10.1002/path.2457.CrossRefGoogle Scholar
  17. 17.
    Bossolasco P, Ricci C, Farina G, et al (2002) Detection of micrometastatic cells in breast cancer by RT-PCR for the mammaglobin gene. Cancer Detect Prev 26(1):60–3. http://www.ncbi.nlm.nih.gov/pubmed/12088204
  18. 18.
    Tanei T, Morimoto K, Shimazu K, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 2009;15(12):4234–41. doi:10.1158/1078-0432.CCR-08-1479.PubMedCrossRefGoogle Scholar
  19. 19.
    Reuben JM, Lee BN, Gao H, et al. Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44(+)CD24(lo) cancer stem cell phenotype. Eur J Cancer. 2011;47(10):1527–36. doi:10.1016/j.ejca.2011.01.011.PubMedCrossRefGoogle Scholar
  20. 20.
    Hu Y, Fan L, Zheng J, et al. Detection of circulating tumor cells in breast cancer patients utilizing multiparameter flow cytometry and assessment of the prognosis of patients in different CTCs levels. Cytometry Part A. 2010;77(3):213–19. doi:10.1002/cyto.a.20838.CrossRefGoogle Scholar
  21. 21.
    Woelfle U, Cloos J, Sauter G, et al (2003) Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63:5679–84. http://cancerres.aacrjournals.org/content/63/18/5679 Google Scholar
  22. 22.
    Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, et al. Changes in cytoskeletal protein composition indicative of an epithelial–mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res. 2005;11:8006–14. doi:10.1158/1078-0432.CCR-05-0632.PubMedCrossRefGoogle Scholar
  23. 23.
    Paterlini-Brechot P, Linda BN. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Letters. 2007;253:180–204. doi:10.1016/j.canlet.2006.12.014.PubMedCrossRefGoogle Scholar
  24. 24.
    Zieglschmid V, Hollmann C, Bocher O. Detection of disseminated tumor cells in peripheral blood. Crit Rev Clin Lab Sci. 2005;42:155–96. doi:10.1111/j.1530-9290.2008.00080_2.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Went PT, Lugli A, Meier S, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004;35:122–8. doi:10.1016/S0046-8177(03)00502-1.PubMedCrossRefGoogle Scholar
  26. 26.
    Packeisen J, Kaup-Franzen C, Knieriem HJ. Detection of surface antigen 17-1A in breast and colorectal cancer. Hybridoma. 1999;18:37–40. doi:10.1089/hyb.1999.18.37.PubMedCrossRefGoogle Scholar
  27. 27.
    Xiao Y, Ye Y, Yearsley K, et al. The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol. 2008;173(2):561–74. doi:10.2353/ajpath.2008.071214.PubMedCrossRefGoogle Scholar
  28. 28.
    Wright MH, Calcagno AM, Salcido CD, et al. Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 2008;10(1):R10. doi:10.1186/bcr1855.PubMedCrossRefGoogle Scholar
  29. 29.
    Lorico A, Rappa G. Phenotypic heterogeneity of breast cancer stem cells. J Oncol. 2011;2011:135039. doi:10.1155/2011/135039.PubMedGoogle Scholar
  30. 30.
    Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. doi:10.1016/j.stem.2007.08.014.PubMedCrossRefGoogle Scholar
  31. 31.
    Honeth G, Bendahl PO, Ringnér M, et al. The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 2008;10:R53. doi:10.1186/bcr2108.PubMedCrossRefGoogle Scholar
  32. 32.
    Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1:149–53. doi:10.1038/nm0295-149.PubMedCrossRefGoogle Scholar
  33. 33.
    Schirrmacher V. T-cell immunity in the induction and maintenance of a tumour dormant state. Semin Cancer Biol. 2001;11:285–95. doi:10.1006/scbi.2001.0384.PubMedCrossRefGoogle Scholar
  34. 34.
    Ignatiadis M, Xenidis N, Perraki M, et al. Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early stage breast cancer. J Clin Oncol. 2007;25:5194–202. doi:10.1200/JCO.2007.11.7762.PubMedCrossRefGoogle Scholar
  35. 35.
    Gaforio JJ, Serrano MJ, Sanchez-Rovira P, et al. Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. Int J Cancer. 2003;107:984–90. doi:10.1103/PhysRevB.62.10802.PubMedCrossRefGoogle Scholar
  36. 36.
    Lang JE, Mosalpuria K, Cristofanilli M, et al. HER2 status predicts the presence of circulating tumor cells in patients with operable breast cancer. Breast Cancer Res Treat. 2009;113:501–7. doi:10.1007/s10549-008-9951-2.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou L, Jiang Y, Yan T, et al. The prognostic role of cancer stem cells in breast cancer: a meta-analysis of published literatures. Breast Cancer Res Treat. 2010;122(3):795–801. doi:10.1007/s10549-010-0999-4.PubMedCrossRefGoogle Scholar
  38. 38.
    Abraham BK, Fritz P, McClellan M, et al (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11(3):1154–9. http://clincancerres.aacrjournals.org/content/11/3/1154 Google Scholar
  39. 39.
    Gangemi R, Paleari L, Orengo AM, et al. Cancer stem cells: a new paradigm for understanding tumor progression and therapeutic resistance. Curr Med Chem. 2009;16:1688–703. doi:10.1016/jsurg2006-12-015.PubMedCrossRefGoogle Scholar
  40. 40.
    Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumor Biol. 2011;32(3):425–40. doi:10.1007/s13277-011-0155-8.CrossRefGoogle Scholar
  41. 41.
    Cariati M, Purushotham AD. Stem cells and breast cancer. Histopathology. 2008;52(1):99–107. doi:10.1111/j.1365-2559.2007.02895.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Ningfang Wang
    • 1
  • Lan Shi
    • 2
  • Huiyu Li
    • 1
  • Yanjie Hu
    • 1
  • Wen Du
    • 1
  • Wei Liu
    • 1
  • Jin’e Zheng
    • 1
  • Shiang Huang
    • 1
  • Xincai Qu
    • 2
  1. 1.Department of Center for Stem Cell Research and Application, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Thyroid and Mammary Gland, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations