Advertisement

Tumor Biology

, Volume 33, Issue 3, pp 573–590 | Cite as

An overview of targeted alpha therapy

  • Young-Seung Kim
  • Martin W. Brechbiel
Research Article

Abstract

The effectiveness of targeted α-therapy (TAT) can be explained by the properties of α-particles. Alpha particles are helium nuclei and are ~8,000 times larger than β-particles (electrons). When emitted from radionuclides that decay via an α-decay pathway, they release enormous amounts of energy over a very short distance. Typically, the range of α-particles in tissue is 50–100 μm and they have high linear energy transfer (LET) with a mean energy deposition of 100 keV/μm, providing a more specific tumor cell killing ability without damage to the surrounding normal tissues than β-emitters. Due to these properties, the majority of pre-clinical and clinical trials have demonstrated that α-emitters such as 225Ac, 211At, 212Bi, 213Bi, 212Pb, 223Ra, and 227Th are ideal for the treatment of smaller tumor burdens, micrometastatic disease, and disseminated disease. Even though these α-emitters have favorable properties, the development of TAT has been limited by high costs, unresolved chemistry, and limited availability of the radionuclides. To overcome these limitations, more potent isotopes, additional sources, and more efficient isotope production methods should be addressed. Furthermore, better chelation and labeling methods with the improvements of isotope delivery, targeting vehicles, molecular targets, and identification of appropriate clinical applications are still required.

Keywords

Radioimmunotherapy Alpha particles Antibody Actinium Astatine Bismuth Lead Radium Thorium Alpha targeted therapy Alpha emitters 

Notes

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. We also thank Diane Milenic for assistance in assembling the manuscript.

Conflicts of interest

None

References

  1. 1.
    Sgouros G, Ballangrud AM, Jurcic JG, McDevitt MR, Humm JL, Erdi YE, Mehta BM, Finn RD, Larson SM, Scheinberg DA. Pharmacokinetics and dosimetry of an α-particle emitter antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med. 1999;40:1935–46.PubMedGoogle Scholar
  2. 2.
    Zalutsky MR, Bigner DD. Radioimmunotherpy with α-particle emitting radioimmunoconjugates. Acta Oncol. 1996;35:373–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Zalutsky MR, Schuster JM, Garg PK, Archer GE, DeWhirst MW, Binger DD. Two approaches for enhancing radioimmunotherapy: alpha emitters and hyperthermia. Recent Results Cancer Res. 1996;141:101–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Nikula TK, McDevitt MR, Finn RD, Wu CC, Kozak RW, Garmestani K, Brechbiel MW, Curcio ML, Pippin CG, Tiffany-Jones L, Geerlings MW, Apostolidis C, Molinet R, Gansow OA, Sheinberg DA. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med. 1999;40:166–76.PubMedGoogle Scholar
  5. 5.
    Raju MR, Eisen Y, Carpenter S, Inkret WC. Radiobiology of alpha-particles. 3. Cell inactivation by alpha-particle traversals of the cell-nucleus. Radiat Res. 1991;128:204–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Vaidyanathan G, Zalutsky MR. Targeted therapy using alpha emitters. Phys Med Biol. 1996;41:1915–31.PubMedCrossRefGoogle Scholar
  7. 7.
    McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, Scheinberg DA. Raioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25:1341–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des. 2000;6:1433–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Imam SK. Advancements in cancer therapy with alpha-emitters: a review. Int J Radiat Oncol Biol Phys. 2001;51:271–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Bolch WE. α-particle emitters in radioimmunotherapy: new and welcome challenges to medical internal dosimetry. J Nucl Med. 2001;42:1222–4.PubMedGoogle Scholar
  11. 11.
    Zalutsky MR, Pozzi OR. Radioimmunotherapy with α-particle emitting radionuclides. Q J Nucl Mol Imaging. 2004;48:289–96.Google Scholar
  12. 12.
    Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatel J-F, Davodeau F, Cherel M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 2005;32:601–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted α-particle therapy. J Nucl Med. 2005;46:199S–204S.PubMedGoogle Scholar
  14. 14.
    Welch MJ. Potential and pitfalls of therapy with α-particles. J Nucl Med. 2005;46:1254–5.PubMedGoogle Scholar
  15. 15.
    Cherel M, Davodeau F, Kraeber-Bodere F, Chatal JF. Current status and perspectives in alpha radioimmunotherapy. Q J Nucl Med Mol Imaging. 2006;50:322–9.PubMedGoogle Scholar
  16. 16.
    Brechbiel MW. Targeted α-therapy: past, present, future? Dalton Trans. 2007;21:4918–28.CrossRefGoogle Scholar
  17. 17.
    Sgouros G. Alpha-particles for targeted therapy. Adv Drug Deliv Rev. 2008;60:1402–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Miederer M, Scheinberg DA, McDevitt MR. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv Drug Deliv Rev. 2008;60:1371–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Barbet J, Cherel M, Chatal J-F. Alpha particles more promising than toxins? Eur J Nucl Med Mol Imaging. 2010;37:849–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Barbet J, Chatal J-F. The best radionuclide for radioimmunotherapy of small tumors: beta- or alpha-emitter? Eur J Nucl Med Mol Imaging. 2011;38:271–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Yong K, Brechbiel MW. Towards translation of 212Pb as a clinical therapeutic: getting the lead in! Dalton Trans. 2011;40:6068–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Adloff JP. The centenary of a controversial discovery: actinium. Radiochim Acta. 2000;88:123–7.CrossRefGoogle Scholar
  23. 23.
    Mirzadeh S. Generator-produced alpha-emitters. Appl Radiat Isot. 2000;49:383–95.CrossRefGoogle Scholar
  24. 24.
    Lambrecht RM, Tomiyoshi K, Sekine T. Radionuclide generators. Radiochim Acta. 1997;77:103–23.Google Scholar
  25. 25.
    Davis IA, Glowienka KA, Boll RA, Deal KA, Brechbiel MW, Stabin M, Bochsler PN, Mirzadeh S, Kennel SJ. Comparison of 225actinium chelates: tissue distribution and radiotoxicity. Nucl Med Biol. 1999;26:581–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Chappell LL, Deal KA, Dadachova E, Brechbiel MW. Synthesis, conjugation and radiolabeling of a novel bifunctional chelating agent for Ac-225 radioimmunotherapy application. Bioconjug Chem. 2000;11:510–9.PubMedCrossRefGoogle Scholar
  27. 27.
    McDevitt MR, Ma DS, Lai LT, Simon J, Borchardt P, Frank RK, Wu K, Pellegrini V, Crucio MJ, Miederer M, Bander NH, Scheinberg DA. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Akabani G, McLendon RE, Bigner DD, Zalutsky MR. Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: theoretical analysis. Int J Radiat Oncol Biol Phys. 2002;54:1259–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Kennel SJ, Mirzadeh S, Eckelman WC, Waldmann TA, Garmestani K, Yordanov AT, Stabin MG, Brechbiel MW. Vascular-targeted radioimmunotherapy with the alpha-particle emitter 211At. Radiat Res. 2002;157:633–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Jaggi JS, Henke E, Seshan SV, Kappel BJ, Chattopadhyay D, May C, McDevitt MR, Nolan D, Mittal V, Benezra R, Scheinberg DA. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization. PLoS One. 2007;3:e267.CrossRefGoogle Scholar
  31. 31.
    Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Scheinberg DA, McDevitt MR. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomed. 2010;5:783–802.Google Scholar
  32. 32.
    Sofou S, Thomas JL, Lin HY, McDevitt MR, Scheinberg DA, Sgouros G. Engineered liposomes for potential α-particle therapy of metastatic cancer. J Nucl Med. 2004;45:253–60.PubMedGoogle Scholar
  33. 33.
    Sofou S, Kappel BJ, Jaggi JS, McDevitt MR, Scheinberg DA, Sgouros G. Enhanced retention of the α-particle-emitting daughters of Actinium-225 by liposome carriers. Bioconjug Chem. 2007;18:2061–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Song H, Hobbs RF, Vajravelu R, Huso DL, Esaias C, Apostolidis C, Morgenstern A, Sgouros G. Radioimmunotherapy of breast cancer metastases with α-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res. 2009;69:8941–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, Rondinone AJ, Standaert RF, Mirzadeh S. LaPO4 nanoparticles doped with Actinium-225 that partially sequester daughter radionuclides. Bioconjug Chem. 2011;22:766–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Miederer M, McDevitt MR, Sgouros G, Kramer K, Cheung NKV, Scheinberg DA. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med. 2004;45:129–37.PubMedGoogle Scholar
  37. 37.
    ClinicalTrials.gov. Targeted atomic nano-generators (Actinium-225-labeled humanized anti-CD33 monoclonal antibody HuM195) in patients with advanced myeloid malignancies. 2011. http://clinicaltrials.gov/show/NCT00672165. June 9 2011.
  38. 38.
    Durbin PW, Asling CW, Johnston ME, Parrott MW, Jeung N, Williams MH, Hamilton JG. The induction of tumors in the rat by astatine-211. Radiat Res. 1958;9:378–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Zalutsky MR, Narula AS. Astatination of proteins using an N-succimidyl tri-n-butylstannyl benzoate intermediate. Appl Radiat Isot. 1988;39:227–32.CrossRefGoogle Scholar
  40. 40.
    Zalutsky MR, Garg PK, Friedman HS, Bigner DD. Labeling monoclonal antibodies and F(ab′)2 fragments with the alpha particle emitting nuclide atstatine-211: preservation of immunoreactivity with in vivo localizing capacity. Proc Natl Acad Sci U S A. 1989;86:7149–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Brown I. Astatine—its organonuclear chemistry and biomedical applications. Adv Inorg Chem. 1987;31:43–88.CrossRefGoogle Scholar
  42. 42.
    Visser GWM. Inorganic astatine chemistry 2. The chameleon behavior and electrophilicity of At-species. Radiochim Acta. 1989;47:97–103.Google Scholar
  43. 43.
    Yordanov AT, Pozzi O, Carlin S, Akabani G, Wieland B, Zalutsky MR. Wet harvesting of no-carrier-added At-211 from an irradiated Bi-209 target for radiopharmaceutical applications. J Radioanal Nucl Chem. 2004;262:593–9.CrossRefGoogle Scholar
  44. 44.
    Zalutsky MR, Zhao XG, Alston KL, Bigner D. High-level production of alpha-particle emitting 211At and preparation of 211At-labeled antibodies for clinical use. J Nucl Med. 2001;42:1508–15.PubMedGoogle Scholar
  45. 45.
    Zalutsky MR, Reardon DA, Pozzi OR, Vaidyanathan G, Bigner DD. Targeted α-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl Med Biol. 2007;34:779–85.PubMedCrossRefGoogle Scholar
  46. 46.
    Boskovitz A, McLendon RE, Okamura T, Sampson JH, Bigner DD, Zalutsky MR. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of α-emitting 211At-labeled trastuzumab. Nucl Med Biol. 2009;36:659–69.PubMedCrossRefGoogle Scholar
  47. 47.
    Elgqvist J, Andersson H, Bäck T, Hultborn R, Jensen H, Karlsson B, Lindegren S, Palm S, Warnhammar E, Jacobsson L. Therapeutic efficacy and tumor dose estimations in radioimmunotherapy of intraperitoneally growing OVCAR-3 cells in nude mice with 211At-labeled monoclonal antibody MX35. J Nucl Med. 2005;46:1907–15.PubMedGoogle Scholar
  48. 48.
    Elgqvist J, Andersson H, Bernhardt P, Bäck T, Claesson I, Hultborn R, Jensen H, Johansson BR, Lindergren S, Olsson M, Palm S, Warnhammar E, Jacobsson L. Administered activity and metastatic cure probability during radioimmunotherapy of ovarian cancer in nude mice with 211At-MX35 F(ab′)2. Int J Radiat Oncol Biol Phys. 2006;66:1228–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Elgqvist J, Andersson H, Bäck T, Claesson I, Hultborn R, Jensen H, Johansson BR, Lindergren S, Olsson M, Palm S, Warnhammar E, Jacobsson L. α-radioimmunotherapy of intraperitoneally growing OVCAR-3 tumors of variable dimensions: outcome related to measured tumor size and mean absorbed dose. J Nucl Med. 2006;47:1342–50.PubMedGoogle Scholar
  50. 50.
    Palm S, Back T, Claesson I, Danielsson A, Elgqvist J, Frost S, Hultborn R, Jensen H, Lindegren S, Jacobsson L. Therapeutic efficacy of astatine-211-labeled trastuzumab on radioresistant SKOV-3 tumors in nude mice. Int J Radiat Oncol Biol Phys. 2007;69:572–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Wilbur DS, Thakar MS, Hamlin DK, Santos EB, Chyan MK, Nakamae H, Pagel JM, Press OW, Sanmaier BM. Reagent for astatination of biomolecules. 4. Comparison of maleimido-closo-decarborate(2-) and meta-[211At]Astatobenzoate conjugates for labeling anti-CD45 antibodies with [211At]Astatine. Bioconjug Chem. 2009;20:1983–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamae H, Wilbur DS, Hamlin DK, Thakar MS, Santos EB, Fisher DR, Kenoyer AL, Pagel JM, Press OW, Storb R, Sandmaier BM. Biodistribution, myelosuppression, and toxicities in mice treated with an anti-CD45 antibody labeled with α-emitting radionuclides Bismuth-213 or Astatine-211. Cancer Res. 2009;69:2408–15.PubMedCrossRefGoogle Scholar
  53. 53.
    Almqvist Y, Orlova A, Sjostrom A, Jensen HJ, Lundqvist H, Sundin A, Tolmachev V. In vitro characterization of 211At-labeled antibody A33—a potential therapeutic agent against metastatic colorectal carcinoma. Cancer Biother Radiopharm. 2005;20:514–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Almqvist Y, Steffen AC, Lundqvist H, Jensen H, Tolmachev V, Sundin A. Biodistribution of 211At-labeled humanized monoclonal antibody A33. Cancer Biother Radiopharm. 2007;22:480–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Nestor M, Persson M, van Dongen GA, Jensen HJ, Lundqvist H, Anniko M, Tolmachev V. In vitro evaluation of the astatinated chimeric monoclonal antibody U36, a potential candidate for treatment of head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2005;32:1296–304.PubMedCrossRefGoogle Scholar
  56. 56.
    Cheng J, Ekberg T, Engstrom M, Nestor M, Jensen HJ, Tolmachev V, Anniko M. Radioimmunotherapy with astatine-211 using chimeric monoclonal antibody U36 in head and neck squamous cell carcinoma. Laryngoscope. 2007;117:1013–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang M, Yao Z, Zhang Z, Garmestani K, Talanov VS, Plascjak PS, Yu S, Kim HS, Goldman CK, Paik CH, Brechbiel MW, Carrasquillo JA, Waldmann TA. The anti-CD25 monoclonal antibody 7G7/B6, armed with the α-emitter 211At, provided effective radioimmunotherapy for murine model of leukemia. Cancer Res. 2006;66:8227–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang Z, Zhang M, Garmestani K, Talanov VS, Plascjak PS, Beck B, Goldman C, Brechbiel MW, Waldmann TA. Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25. Blood. 2006;108:1007–12.PubMedCrossRefGoogle Scholar
  59. 59.
    Bourgeois M, Guerard F, Alliot C, Mougin-Degraef M, Rajerison H, Remaud-Le Saec P, Gestin JF, Davodeau F, Cherel M, Barbet J, Faivre-Chauvet A. Feasibility of the radioastatination of a monoclonal antibody with astatine-211 purified by wet extraction. J Label Compd Radiopharm. 2008;51:379–83.CrossRefGoogle Scholar
  60. 60.
    Zalutsky MR, McLendon RE, Garg PK, Archer GE, Schuster JM, Bigner DD. Radioimmunotherapy of neoplastic meningitis in rats using an α-particle emitting immunoconjugate. Cancer Res. 1994;54:4719–25.PubMedGoogle Scholar
  61. 61.
    Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Wong TZ, Bigner DD. Clinical experience with α-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49:30–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Andersson H, Cederkrantz E, Back T, Divgi C, Elgqvist J, Himmelman J, Horvath G, Jacbsson L, Jensen H, Lindegren S, Palm S, Hultborn R. Intraperitoneal α-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab′)2—a phase I study. J Nucl Med. 2009;50:1153–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Atcher RW, Friedman AM, Hines JJ. An improved generator for the production of 212Pb and 212Bi from 224Ra. Int J Radiat Appl Instrum A. 1988;39:283–6.CrossRefGoogle Scholar
  64. 64.
    Gansow OA, Atcher RW, Link DC, Friedman AM, Seevers RH, Anderson W, Scheinberg DA, Strand M. Generator-produced Bi-212: chelated to chemically modified monoclonal antibody for use in radiotherapy. Am Chem Soc Symp Ser. 1984;241:215–27.Google Scholar
  65. 65.
    Brechbiel MW, Gansow OA. Synthesis of C-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labeling of monoclonal antibodies with the bismuth-212 α-particle emitter. J Chem Soc Perkin Trans. 1992;1:1173–8.CrossRefGoogle Scholar
  66. 66.
    Wu C, Kobayashi H, Sun B, Yoo TM, Paik CH, Gansow OA, Carrasquillo JA, Pastan I, Brechbiel MW. Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorg Med Chem. 1997;5:1925–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Ruegg CL, Anderson-Berg WT, Brechbiel MW, Mirzadeh S, Gansow OA, Strand M. Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Cancer Res. 1990;50:4221–6.PubMedGoogle Scholar
  68. 68.
    Junghans RP, Dobbs D, Brechbiel MW, Mirzadeh S, Raubitschek AA, Gansow OA, Waldmann TA. Pharmacokinetics and bioactivity of 1, 4, 7, 10-tetraazacyclododecane N, N’N”, N’”-tetraacetic acid (DOTA)-bismuth conjugated anti-Tac antibody for alpha-emitter (212Bi) therapy. Cancer Res. 1993;53:5683–9.PubMedGoogle Scholar
  69. 69.
    Boll RA, Malkemus D, Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot. 2005;62:667–79.PubMedCrossRefGoogle Scholar
  70. 70.
    Boll RA, Mirzadeh S, Kennel SJ. Optimizations of radiolabeling of immunoprotein with Bi-213. Radiochim Acta. 1997;79:145–9.Google Scholar
  71. 71.
    McDevitt MR, Nikula TN, Finn RD, Curcio MJ, Gansow OA, Geerlings MW, Larson SM, Scheinberg DA. Bismuth labeled antibodies for therapy of leukemias, lymphomas, and carcinomas: preclinical studies. Tumor Target. 1996;2:182.Google Scholar
  72. 72.
    Finn RD, McDevitt MR, Scheinberg DA. Refinements and improvements for Bi-213 production and use as a targeted therapeutic radiopharmaceutical. J Label Compd Radiopharm. 1997;40:293.Google Scholar
  73. 73.
    McDevitt MR, Finn RD, Sgouros G, Sheinberg DA. An Ac-225/Bi-213 generator system for therapeutic clinical applications: construction and operation. Appl Radiat Isot. 1999;50:895–904.PubMedCrossRefGoogle Scholar
  74. 74.
    Ma DH, McDevitt MR, Finn RD, Scheinberg DA. Breakthrough of Ac-225 and its radionuclide daughters from an 225Ac/213Bi generator: development of new methods, quantitative characterization, and implications for clinical use. Appl Radiat Isot. 2001;55:667–78.PubMedCrossRefGoogle Scholar
  75. 75.
    Pippin CG, Gansow OA, Brechbiel MW, Koch L, Molinet R, van Geel J, Apostolidis C, Geerlings MW, Scheinberg DA. Recovery of Bi-213 from an Ac-225 cow: application to the radiolabeling of antibodies with Bi-213. In: Emran AM, editor. Chemists’ views of imaging centers. New York: Plenum; 1995. p. 318–22.Google Scholar
  76. 76.
    Ma DH, McDevitt MR, Finn RD, Scheinberg DA. Rapid preparation of short-lived alpha particle emitting radioimmunopharmaceuticals. Appl Radiat Isot. 2001;55:463–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Rizvi SMA, Qu CF, Song YJ, Raja C, Allen BJ. In vivo studies of pharmacokinetics and efficacy of bismuth-213 labeled antimelanoma monoclonal antibody 9.2.27. Cancer Biol Ther. 2005;4:763–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Song YJ, Qu CF, Rizvi SMA, Li Y, Robertson G, Raja C, Morgenstern A, Apostolidis C, Perkins AC, Allen BJ. Cytotoxicity of PAI2, C595 and herceptin vectors labeled with the alpha-emitting radioisotope bismuth-213 for ovarian cancer cell monolayers and clusters. Cancer Lett. 2006;234:176–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Rizvi SMA, Li Y, Song EYJ, Qu CF, Raja C, Morgenstern A, Apostolidis C, Allen BJ. Preclinical studies of bismuth-213 labeled plasminogen activator inhibitor type 2 (PAI2) in a prostate cancer nude mouse xenograft model. Cancer Biol Ther. 2006;5:386–93.CrossRefGoogle Scholar
  80. 80.
    Song EY, Qu CF, Rizvi SMA, Raja C, Beretov J, Morgenstern A, Apostolidis C, Bruchertseifer F, Perkins A, Allen BJ. Bismuth-213 radioimmunotherapy with C595 anti-MUC1 monoclonal antibody in an ovarian cancer ascites model. Cancer Biol Ther. 2008;7:76–86.PubMedCrossRefGoogle Scholar
  81. 81.
    Rizvi SMA, Song EY, Raja C, Beretov J, Morgenstern A, Apostolidis C, Russel PJ, Kearsley JH, Allen BJ. Preparation and testing of bevacizumab radioimmunoconjugates bismuth-213 and bismuth205/bismuth-206. Cancer Biol Ther. 2008;7:1547–54.CrossRefGoogle Scholar
  82. 82.
    Song H, Shahverdi K, Huso DL, Esaias CK, Fox J, Liedy A, Zhang Z, Reilly RT, Apostolidis C, Morgenstern A, Sgouros G. 213Bi (α-emitter)-antibody targeting of breast cancer metastases in the neu-N transgenic mouse model. Cancer Res. 2008;68:3873–80.PubMedCrossRefGoogle Scholar
  83. 83.
    Lingappa M, Song H, Thompson S, Bruchertseifer F, Morgenstern A, Sgouros G. Immunoliposomal delivery of 213Bi for α-emitter targeting of metastatic breast cancer. Cancer Res. 2010;70:6815–23.PubMedCrossRefGoogle Scholar
  84. 84.
    Park SI, Shenoi J, Pagel JM, Hamlin DK, Wilbur DS, Orgun N, Kenoyer AL, Frayo S, Axtman A, Back R, Lin Y, Fisher DR, Gopal AK, Green DJ, Press OW. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicated minimal residual disease. Blood. 2011;116:4231–9.CrossRefGoogle Scholar
  85. 85.
    Bloechl S, Beck R, Seidl C, Morgenstern A, Schwaiger M, Senekowitsch-Schmidtke R. Fractionated locoregional low-dose radioimmunotherapy improves survival in a mouse model of diffuse-type gastric cancer using a 213Bi-conjugated monoclonal antibody. Clin Cancer Res. 2005;11:7070s–4s.PubMedCrossRefGoogle Scholar
  86. 86.
    Milenic DM, Brady ED, Garmestani K, Albert PS, Abdulla A, Brechbiel MW. Improved efficacy of α-particle-targeted radiation therapy. Cancer. 2010;116:1059–66.PubMedCrossRefGoogle Scholar
  87. 87.
    Wild D, Frischknecht M, Zhang H, Morgenstern A, Bruchertseifer F, Boisclair J, Provencher-Bolliger A, Reubi JC, Maecke HR. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213BI-AMBA versus 177Lu-DOTA-PESIN). Cancer Res. 2011;71:1009–18.PubMedCrossRefGoogle Scholar
  88. 88.
    Heeger SW, Moldenhauer G, Egerer G, Wesch H, Eisenmenger A, Nikula T, Apostolidis C, Janssens W, Brechbiel MW, Haberkorn U, Ho AD, Haas R. Treatment of B-lineage non-Hodgkin’s lymphoma using 213Bi-labeled anti-CD20-CHX-A″-DTPA anti body conjugate. J Nucl Med. 2002;43:116P.Google Scholar
  89. 89.
    Heeger S, Moldenhauer G, Egerer G, Wesch H, Martin S, Nikula T, Aposstolidis C, Brechbiel MW, Ho AD, Haas R. Alpha-radioimmunotherapy of B-lineage non-Hodgkin’s lymphoma using 213Bi-labeled anti-CD19 and anti-CD20-CHX-A″-DTPA conjugates. ACS Meet Abstr. 2003;225:U261.Google Scholar
  90. 90.
    Raja C, Graham P, Rizvi SMA, Song E, Goldsmith H, Thompson J, Bosserhoff A, Morgenstern A, Apostolidis C, Kearsley J, Reisfeld R, Allen BJ. Interim analysis of toxicity and response in phase I trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol Ther. 2007;6:846–52.PubMedCrossRefGoogle Scholar
  91. 91.
    Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, Ballangrud AM, Hamacher KA, Ma D, Humm JL, Brechbiel MW, Molinet R, Scheinberg DA. Targeted α particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–9.PubMedGoogle Scholar
  92. 92.
    Rosenblat TL, McDevitt MR, Mulford DA, Pandit-Taskar N, Divgi CR, Panageas KS, Heaney ML, Chanel S, Morgenstern A, Sgouros G, Larson SM, Scheinberg DA, Jurcic JG. Sequential cytarbine and α-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16:5303–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Kneifel S, Cordier D, Good S, Ionescu MCS, Ghaffari A, Hofer S, Kretzschmar M, Tolnay M, Apostolidis C, Waser B, Arnold M, Mueller-Brand J, Maecke HR, Reubi JC, Merlo A. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance P. Clin Cancer Res. 2006;12:3843–50.PubMedCrossRefGoogle Scholar
  94. 94.
    Cordier D, Forrer F, Bruchertseifer F, Morgenstern A, Apostolidis C, Good S, Muller-Brand J, Macke H, Reubi JC, Merlo A. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8, Met(O2)11]-substance P: a pilot trial. Eur J Nucl Med Mol Imaging. 2010;37:1335–44.PubMedCrossRefGoogle Scholar
  95. 95.
    Mausner LF, Straub RE, Srivastava SC. The “in vivo” generator for radioimmunotherapy. J Label Compd Radiopharm. 1989;26:177–8.CrossRefGoogle Scholar
  96. 96.
    Kumar K, Magerstadt M, Gansow OA. Lead (II) and bismuth (III) complexes of the polyazacyclo-alkane-N-acetic acids NOTA, DOTA, and TETA. J Chem Soc Chem Commun. 1989:145–6.Google Scholar
  97. 97.
    Gansow OA, Brechbiel MW, Pippin CG, McMurry TJ, Lambrecht R, Colcher D, Schlom J, Roselli M, Strand M, Huneke RB, Ruegg CL. Lead and bismuth complexes of functionalized DTPA ligands and of the polyazacycloalkane-N-acetic acids DOTA. Utility for radioimmunoimaging and radioimmunotherapy. Antibody Immunoconj Radiopharm. 1991;4:413–25.Google Scholar
  98. 98.
    Pippin CG, McMurry TJ, Brechbiel MW, McDonald R, Lambrecht R, Milenic D, Roselli M, Colcher D, Gansow OA. Lead (II) complexes of 1,4,7,10-tetraazacyclododecane-N, N’, N”, N’”-tetraacetate: solution chemistry and application to tumor localization with 203Pb labeled monoclonal antibodies. Inorg Chim Acta. 1995;239:43–51.CrossRefGoogle Scholar
  99. 99.
    Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW. Synthesis, characterization and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl Med Biol. 2000;27:93–100.PubMedCrossRefGoogle Scholar
  100. 100.
    Rubel G, Wu C, Squire RA, Gansow OA, Strand M. The use of 212Pb-labeled monoclonal antibody in the treatment of murine erythroleukemia. Int J Radiat Oncol Biol Phys. 1996;34:609–16.CrossRefGoogle Scholar
  101. 101.
    Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, Breachbiel MW. α-particle radioimmunotherapy of disseminated peritoneal disease using a 212Pb-labeled radioimmunoconjugates targeting HER2. Cancer Biother Radiopharm. 2005;20:557–68.PubMedCrossRefGoogle Scholar
  102. 102.
    Milenic DE, Garmestani K, Brady ED, Abdulla A, Flynn J, Brechbiel MW. Potentiation of high-LET radiation by gemcitabine: targeting HER-2 with trastuzumab to treat disseminated peritoneal disease. Clin Cancer Res. 2007;13:1926–35.PubMedCrossRefGoogle Scholar
  103. 103.
    Milenic DE, Garmestani K, Brady ED, Baidoo KE, Albert PS, Wong KJ, Flynn J, Brechbiel MW. Multimodality therapy: potentiation of high linear energy transfer radiation with paclitaxel for the treatment of disseminated peritoneal disease. Clin Cancer Res. 2008;14:5108–15.PubMedCrossRefGoogle Scholar
  104. 104.
    Roseborough SF. Two-step immunological approaches for imaging and therapy. Q J Nucl Med. 1996;40:234–51.Google Scholar
  105. 105.
    Goodwin DA. Tumor pretargeting: almost the bottom line. J Nucl Med. 1995;36:876–9.PubMedGoogle Scholar
  106. 106.
    Su FM, Beaumier P, Axworthy D, Atcher R, Fritzberg A. Pretargeted radioimmunotherapy in tumored mice using an in vivo 212Pb/212Bi generator. Nucl Med Biol. 2005;32:741–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Dijkgraaf I, Boerman OC, Oyen WJG, Corstens FHM, Gotthardt M. Development and application of peptide-based radiopharmaceuticals. Anti Cancer Agents Med Chem. 2007;7:543–51.Google Scholar
  108. 108.
    Miao Y, Hylarides M, Fisher DR, Shelton T, Moore H, Wester DW, Fritzberg AR, Winkelmann CT, Hoffman T, Quinn TP. Melanoma therapy via peptide-targeted α-radiation. Clin Cancer Res. 2005;11:5616–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Atcher RW, Friedman AM, Huizenga JR, Spencer RP. A radionuclide generator for the production of Pb-211 and its daughters. J Radioanal Nucl Chem. 1989;135:215–21.CrossRefGoogle Scholar
  110. 110.
    Wilbur DS. Potential use of alpha emitting radionuclides in the treatment of cancer. Antibody Immunoconj Radiopharm. 1991;4:85–97.Google Scholar
  111. 111.
    ClinicalTrials.gov. A phase III study of Alpharadin (Radium-223) in patients with symptomatic hormone refractory prostate cancer with skeletal metastases (ALSYMPCA). 2011. http://clinicaltrials.gov/ct2/show/NCT00699751. 6 January 2011.
  112. 112.
    ClincalTrials.gov. A study of Alpharadin with docetaxel in patients with bone metastasis from castration-resistant prostate cancer (CRPC). 2010. http://clinicaltrials.gov/ct2/show/NCT01106352. 10 December 2010.
  113. 113.
    ClinicalTrials.gov. A study of Alpharadin in breast cancer patients with bone dominant disease no longer considered suitable for hormone therapy. 2011. http://clinicaltrials.gov/ct2/show/NCT01070485. 7 March 2011.
  114. 114.
    Henriksen G, Bruland OS, Larsen RH. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle emitting agents. Anticancer Res. 2004;24:101–5.PubMedGoogle Scholar
  115. 115.
    Larsen RH, Saxtorph H, Skydsgaard M. Radiotoxicity of the alpha-emitting bone-seeker Ra-223 injected intravenously into mice: histology, clinical chemistry and hematology. In Vivo. 2006;20:325–31.PubMedGoogle Scholar
  116. 116.
    Dahle J, Borrebæk MKB, Bruland ØS, Salberg G, Olsen DR, Larsen RH. Initial evaluation of 227Th-p-benzyl-DOTA-rituximab for low-dose rate α-particle radioimmunotherapy. Nucl Med Biol. 2006;33:271–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Larsen RH, Borrebæk J, Dahle J, Melhus KB, Krogh C, Valan MH, Bruland ØS. Preparation of 227Th-labeled radioimmunoconjugates, assessment of serum stability and antigen binding ability. Cancer Biother Radiopharm. 2007;22:431–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Dahle J, Borrebæk J, Jonasdottir TJ, Hjelmerud AK, Melhus KB, Bruland ØS, Press OW, Larsen RH. Targeted cancer therapy with a novel low-dose rate α-emitting radioimmunoconjugate. Blood. 2007;110:2049–56.PubMedCrossRefGoogle Scholar
  119. 119.
    Dahle J, Bruland ØS, Larsen RH. Relative biologic effects of low-dose-rate α-emitting 227Th-rituximab and β-emitting 90Y-tiuexetan-ibritumomab versus external beam X-radiation. Int J Radiat Oncol Biol Phys. 2008;72:186–92.PubMedCrossRefGoogle Scholar
  120. 120.
    Dahle J, Jonasdottir TJ, Heyerdahl H, Nesland JM, Borrebæk J, Hjelmerud AK, Larsen RH. Assessment of long-term radiotoxicity after treatment with the low-dose alpha-particle-emitting radioimmunoconjugate 227Th-rituximab. Eur J Nucl Med Mol Imaging. 2010;37:93–102.PubMedCrossRefGoogle Scholar
  121. 121.
    Heyerdahl H, Krogh C, Borrebæk J, Larsen A, Dahle J. Treatment of HER2-expressing breast cancer and ovarian cancer cells with alpha particle-emitting 227Th-trastuzumab. Int J Radiat Oncol Biol Phys. 2011;79:563–70.PubMedCrossRefGoogle Scholar
  122. 122.
    Parker C, Aksnes A, Haugen I, Bolstad B, Nilsson S. Radium-223 chloride, a novel, highly targeted alpha-pharmaceutical for treatment of bone metastases from castration-resistant prostate cancer (CRPC): hematologic and safety profile with repeated dosing. Ann Oncol. 2010;21 Suppl 8:viii277–8.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  1. 1.Radioimmune & Inorganic Chemistry Section, Radiation Oncology BranchNCI, NIHBethesdaUSA

Personalised recommendations