Tumor Biology

, Volume 32, Issue 2, pp 381–390

Prognostic and predictive values of pERK1/2 and pAkt-1 expression in non-small cell lung cancer patients treated with adjuvant chemotherapy

  • Yan Shi
  • Li Chen
  • Jie Li
  • Ya-Li Lv
  • Qiong Sun
  • Ling-Xiong Wang
  • Shun-Chang Jiao
Research Article

Abstract

Ras/ERK and PI3K/Akt pathways are reported to play a prognostic role and contribute to drug resistance in many cancers. The objective of this study was to explore associations between the expression levels of several molecules in Ras/ERK and PI3K/Akt pathways and their clinical significance in predicting the effectiveness of postoperative adjuvant chemotherapy in patients with non-small cell lung cancer (NSCLC). The expressions of K-ras, Raf-1, ERK1/2, phosphorylated ERK1/2 (pERK1/2), Akt-1, phosphorylated Akt-1 (pAkt-1), and Bcl-2 were detected by immunohistochemistry in tumor specimens from 144 NSCLC patients. The correlations between the expression levels of these molecules and the clinicopathological characteristics were analyzed. Patient survival was analyzed by Kaplan–Meier method, log-rank test, and Cox regression. The positive expression rates of K-ras, Raf-1, ERK1/2, pERK1/2, Akt-1, pAkt-1, and Bcl-2 were 21.5%, 41.7%, 59.7%, 27.1%, 50.7%, 36.1%, and 30.6%, respectively. Univariate analysis showed that patients with pERK1/2-positive (P = 0.01), Bcl-2-positive (P = 0.023), or pAkt-1 negative (P = 0.021) had significantly better recurrence-free survival (RFS) than those with pERK1/2-negative, Bcl-2-negative, or pAkt-1-positive. Multivariate analysis showed that earlier stage (P ≤ 0.001), non-adenocarcinoma (P ≤ 0.001), pERK1/2-positive (P ≤ 0.001), and pAkt-1-negative (P = 0.016) were independent prognostic factors for a better RFS in NSCLC. pERK1/2-positive and pAkt-1-negative proved to contribute to a better RFS in postoperative NSCLC patients who received adjuvant chemotherapy after taking the stage and histological subtype into account. pERK1/2 and pAkt-1 could be considered as new independent prognostic biomarkers for predicting RFS and selecting patients who are more likely to benefit from postoperative adjuvant chemotherapy.

Keywords

pERK1/2 pAkt-1 Immunohistochemistry Recurrence-free survival NSCLC Adjuvant chemotherapy 

References

  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96. doi:10.3322/CA.2007.0010.CrossRefPubMedGoogle Scholar
  2. 2.
    Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J, et al. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med. 2004;350(4):351–60.CrossRefPubMedGoogle Scholar
  3. 3.
    Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C, et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med. 2005;352(25):2589–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Douillard JY, Rosell R, De Lena M, Carpagnano F, Ramlau R, Gonzáles-Larriba JL, et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol. 2006;7(9):719–27.CrossRefPubMedGoogle Scholar
  5. 5.
    Hotta K, Matsuo K, Ueoka H, Kiura K, Tabata M, Tanimoto M. Role of adjuvant chemotherapy in patients with resected non-small-cell lung cancer: reappraisal with a meta-analysis of randomized controlled trials. J Clin Oncol. 2004;22(19):3860–7. doi:10.1200/JCO.2004.01.153.CrossRefPubMedGoogle Scholar
  6. 6.
    Simon GR, Sharma S, Cantor A, Smith P, Bepler G. ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer. Chest. 2005;127(3):978–83. doi:10.1378/chest.127.3.978.CrossRefPubMedGoogle Scholar
  7. 7.
    Lee KH, Min HS, Han SW, Oh DY, Lee SH, Kim DW, et al. ERCC1 expression by immunohistochemistry and EGFR mutations in resected non-small cell lung cancer. Lung Cancer. 2008;60(3):401–7. doi:10.1016/j.lungcan.2007.10.014.CrossRefPubMedGoogle Scholar
  8. 8.
    Olaussen KA, Dunant A, Fouret P, Brambilla E, André F, Haddad V, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med. 2006;355(10):983–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Breen D, Barlési F. The place of excision repair cross complementation 1 (ERCC1) in surgically treated non-small cell lung cancer. Eur J Cardiothorac Surg. 2008;33(5):805–11. doi:10.1016/j.ejcts.2008.01.067.CrossRefPubMedGoogle Scholar
  10. 10.
    Sève P, Lai R, Ding K, Winton T, Butts C, Mackey J, et al. Class III beta-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR.10. Clin Cancer Res. 2007;13(3):994–9.CrossRefPubMedGoogle Scholar
  11. 11.
    McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 2006;46:249–79. doi:10.1016/j.advenzreg.2006.01.004.CrossRefPubMedGoogle Scholar
  12. 12.
    Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–55. doi:10.1093/jnci/dji112.CrossRefPubMedGoogle Scholar
  13. 13.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.CrossRefPubMedGoogle Scholar
  14. 14.
    Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2(1):57–61. doi:10.1371/journal.pmed.0020017.CrossRefGoogle Scholar
  15. 15.
    Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305(5687):1163–7. doi:10.1126/science.1101637.CrossRefPubMedGoogle Scholar
  16. 16.
    Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005;23(25):5900–9. doi:10.1200/JCO.2005.02.857.CrossRefPubMedGoogle Scholar
  17. 17.
    Massarelli E, Varella-Garcia M, Tang XM, Xavier AC, Ozburn NC, Liu DD, et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2007;13(10):2890–6. doi:10.1158/1078-0432.CCR-06-3043.CrossRefPubMedGoogle Scholar
  18. 18.
    David O, Jett J, LeBeau H, Dy G, Hughes J, Friedman M, et al. Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res. 2004;10(20):6865–71. doi:10.1158/1078-0432.CCR-04-0174.CrossRefPubMedGoogle Scholar
  19. 19.
    Galleges Ruiz MI, Floor K, Steinberg SM, Grünberg K, Thunnissen FB, Belien JA, et al. Combined assessment of EGFR pathway-related molecular markers and prognosis of NSCLC patients. Br J Cancer. 2009;100(1):145–52. doi:10.1038/sj.bjc.6604781.CrossRefPubMedGoogle Scholar
  20. 20.
    Davis JM, Weinstein-Oppenheimer CR, Steelman LS, Navolanic PN, Hu W, Konopleva M, et al. Raf-1 and Bcl-2 induce distinct and common pathways which contribute to breast cancer drug resistance. Clin Cancer Res. 2003;9(3):1161–70.PubMedGoogle Scholar
  21. 21.
    Lee JT, Steelman LS, McCubrey JA. Modulation of Raf/MEK/ERK pathway in prostate cancer drug resistance. Int J Oncol. 2005;26(6):1637–44.PubMedGoogle Scholar
  22. 22.
    Lee JT, Steelman LS, McCubrey JA. Phosphatidylinositol 3′-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. 2004;64(22):8397–404. doi:10.1158/0008-5472.CAN-04-1612.CrossRefPubMedGoogle Scholar
  23. 23.
    Turner BC, Krajewski S, Krajewska M, Takayama S, Gumbs AA, Carter D, et al. BAG-1: a novel biomarker predicting long-term survival in early-stage breast cancer. J Clin Oncol. 2001;19(4):992–1000.PubMedGoogle Scholar
  24. 24.
    Rakha EA, Abd El Rehim D, Pinder SE, Lewis SA, Ellis IO. E-Cadherin expression in invasive non-lobular carcinoma of the breast and its prognostic significance. Histopathology. 2005;46(6):685–93. doi:10.1111/j.1365-2559.2005.02156.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Goss GD, Lorimer I, Tsao MS, O’Callaghan CJ, Ding K, Masters GA, et al. A phase III randomized, double-blind, placebo-controlled trial of the epidermal growth factor receptor inhibitor gefitinib in completely resected stage IB-IIIA non-small cell lung cancer (NSCLC): NCIC CTG BR.19. J Clin Oncol ASCO Annual Meeting Proceedings. 2010;28(18suppl):LBA7005.Google Scholar
  26. 26.
    Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90. doi:10.1038/sj.onc.1210421.CrossRefPubMedGoogle Scholar
  27. 27.
    Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310. doi:10.1038/sj.onc.1210422.CrossRefPubMedGoogle Scholar
  28. 28.
    Han SW, Kim TY, Hwang PG, Jeong S, Kim J, Choi IS, et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol. 2005;23(11):2493–501. doi:10.1200/JCO.2005.01.388.CrossRefPubMedGoogle Scholar
  29. 29.
    Han SW, Kim TY, Jeon YK, Hwang PG, Im SA, Lee KH, et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res. 2006;12(8):2538–44. doi:10.1158/1078-0432.CCR-05-2845.CrossRefPubMedGoogle Scholar
  30. 30.
    Vicent S, Lopez-Picazo JM, Toledo G, Lozano MD, Torre W, Garcia-Corchón C, et al. ERK1/2 is activated in non-small-cell lung cancer and associated with advanced tumours. Br J Cancer. 2004;90(5):1047–52. doi:10.1038/sj.bjc.6601644.CrossRefPubMedGoogle Scholar
  31. 31.
    Mukohara T, Kudoh S, Yamauchi S, Kimura T, Yoshimura N, Kanazawa H, et al. Expression of epidermal growth factor receptor (EGFR) and downstream-activated peptides in surgically excised non-small-cell lung cancer (NSCLC). Lung Cancer. 2003;41(2):123–30. doi:10.1016/S0169-5002(03)00225-3.CrossRefPubMedGoogle Scholar
  32. 32.
    Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–64. doi:10.1038/sj.onc.1209085.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsurutani J, Fukuoka J, Tsurutani H, Shih JH, Hewitt SM, Travis WD, et al. Evaluation of two phosphorylation sites improves the prognostic significance of Akt activation in non-small-cell lung cancer tumors. J Clin Oncol. 2006;24(2):306–14. doi:10.1200/JCO.2005.02.4133.CrossRefPubMedGoogle Scholar
  34. 34.
    Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61(10):3986–97.PubMedGoogle Scholar
  35. 35.
    Tu ML, Wang HQ, Chen LJ, Lu JC, Jiang F, Liang JH, et al. Involvement of Akt1/protein kinase Balpha in tumor conditioned medium-induced endothelial cell migration and survival in vitro. J Cancer Res Clin Oncol. 2009;135(11):1543–50. doi:10.1007/s00432-009-0601-9.CrossRefPubMedGoogle Scholar
  36. 36.
    Yoshizawa A, Fukuoka J, Shimizu S, Shilo K, Franks TJ, Hewitt SM, et al. Overexpression of phospho-eIF4E is associated with survival through AKT pathway in non-small cell lung cancer. Clin Cancer Res. 2010;16(1):240–8. doi:10.1158/1078-0432.CCR-09-0986.CrossRefPubMedGoogle Scholar
  37. 37.
    Tang JM, He QY, Guo RX, Chang XJ. Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer. 2006;51(2):181–91. doi:10.1016/j.lungcan.2005.10.003.CrossRefPubMedGoogle Scholar
  38. 38.
    Haas-Kogan DA, Prados MD, Lamborn KR, Tihan T, Berger MS, Stokoe D. Biomarkers to predict response to epidermal growth factor receptor inhibitors. Cell Cycle. 2005;4(10):1369–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int J Cancer. 2001;94:774–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Albanell J, Rojo F, Baselga J. Pharmacodynamic studies with the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839. Semin Oncol. 2001;28:56–66.CrossRefPubMedGoogle Scholar
  41. 41.
    Janmaat ML, Kruyt FA, Rodriguez JA, Giaccone G. Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. Clin Cancer Res. 2003;9(6):2316–26.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2010

Authors and Affiliations

  • Yan Shi
    • 1
  • Li Chen
    • 1
  • Jie Li
    • 2
  • Ya-Li Lv
    • 2
  • Qiong Sun
    • 1
  • Ling-Xiong Wang
    • 3
  • Shun-Chang Jiao
    • 1
  1. 1.Department of Medical OncologyGeneral Hospital of CPLABeijingChina
  2. 2.Department of PathologyGeneral Hospital of CPLABeijingChina
  3. 3.Cancer Center LaboratoryGeneral Hospital of CPLABeijingChina

Personalised recommendations