Tumor Biology

, Volume 31, Issue 5, pp 381–390

CD133+ cells from medulloblastoma and PNET cell lines are more resistant to cyclopamine inhibition of the sonic hedgehog signaling pathway than CD133− cells

  • Mónica Enguita-Germán
  • Paula Schiapparelli
  • Juan A. Rey
  • Javier S. Castresana
Research Article


CD133 has recently been used as a reliable marker for brain tumor stem cells isolation. Sonic hedgehog (SHH) is implicated in medulloblastoma and central primitive neuroectodermal tumor (cPNET) formation. It has recently been suggested a role for the EWS/FLI1 fusion protein—typical of pPNET—in the upregulation of GLI1 and PTCH1 genes. Cyclopamine inhibits the SHH pathway in medulloblastoma cell lines, but its effect on cPNET and pPNET cell lines has not been well established yet. Our purpose was to study the effect of cyclopamine on medulloblastoma and PNET cell lines and to analyze whether CD133 expression might be able to modify this effect. We analyzed gene expression, cell viability, apoptosis, and tumorigenic capability before and after cyclopamine treatment in CD133 high-expressing and CD133 low-expressing cell lines. All medulloblastoma and PNET cell lines displayed an inhibitory effect on the expression of SHH pathway genes, on viability, and on tumorigenic potential after treatment. Nevertheless, CD133 expression made the cells more resistant to cyclopamine inhibition. These results open new doors to the understanding of CD133+ cancer stem cells as residual cells that might be responsible for treatment resistance.


Sonic hedgehog Cyclopamine CD133 Medulloblastoma PNET EWS/FLI1 



brain tumor stem cell


central nervous system


central primitive neuroectodermal tumor


external granular layer


granule cell precursor


neural stem cell


peripheral primitive neuroectodermal tumor


sonic hedgehog

Supplementary material

13277_2010_46_MOESM1_ESM.doc (27 kb)
ESM 1(DOC 27 kb)


  1. 1.
    Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med. 2005;353:811–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu Rev Neurosci. 2001;24:385–428.CrossRefPubMedGoogle Scholar
  3. 3.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMedGoogle Scholar
  5. 5.
    Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8:323–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMedGoogle Scholar
  7. 7.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of cd133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.CrossRefPubMedGoogle Scholar
  8. 8.
    Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, et al. Stem cell marker cd133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008;14:123–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.CrossRefPubMedGoogle Scholar
  10. 10.
    Weiss WA. Genetics of brain tumors. Curr Opin Pediatr. 2000;12:543–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, et al. The Ewing family of tumors—a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331:294–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.CrossRefPubMedGoogle Scholar
  13. 13.
    Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14:994–1004.PubMedGoogle Scholar
  15. 15.
    Marino S. Medulloblastoma: developmental mechanisms out of control. Trends Mol Med. 2005;11:17–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Polkinghorn WR, Tarbell NJ. Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol. 2007;4:295–304.CrossRefPubMedGoogle Scholar
  17. 17.
    Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Gene Chromosomes Can. 2000;27:44–51.CrossRefGoogle Scholar
  18. 18.
    Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM, et al. Transcriptional profiling of the sonic hedgehog response: a critical role for n-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A. 2003;100:7331–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Kenney AM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development. 2003;130:15–28.CrossRefPubMedGoogle Scholar
  20. 20.
    Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, et al. The sonic hedgehog-gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001;128:5201–12.PubMedGoogle Scholar
  21. 21.
    Moriuchi S, Shimizu K, Miyao Y, Hayakawa T. An immunohistochemical analysis of medulloblastoma and pnet with emphasis on n-myc protein expression. Anticancer Res. 1996;16:2687–92.PubMedGoogle Scholar
  22. 22.
    Vorechovsky I, Tingby O, Hartman M, Stromberg B, Nister M, Collins VP, et al. Somatic mutations in the human homologue of drosophila patched in primitive neuroectodermal tumours. Oncogene. 1997;15:361–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Wolter M, Reifenberger J, Sommer C, Ruzicka T, Reifenberger G. Mutations in the human homologue of the drosophila segment polarity gene patched (ptch) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 1997;57:2581–5.PubMedGoogle Scholar
  24. 24.
    Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev. 2002;16:2743–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297:1559–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Zwerner JP, Joo J, Warner KL, Christensen L, Hu-Lieskovan S, Triche TJ, et al. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene. 2008;27:3282–91.CrossRefPubMedGoogle Scholar
  27. 27.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. Hedgehog-gli1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17:165–72.CrossRefPubMedGoogle Scholar
  28. 28.
    Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al. Inhibition of prostate cancer proliferation by interference with sonic hedgehog-gli1 signaling. Proc Natl Acad Sci U S A. 2004;101:12561–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Lauth M, Bergstrom A, Shimokawa T, Toftgard R. Inhibition of gli-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A. 2007;104:8455–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Qualtrough D, Buda A, Gaffield W, Williams AC, Paraskeva C. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer. 2004;110:831–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.CrossRefPubMedGoogle Scholar
  32. 32.
    Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene. 2004;23:7267–73.CrossRefPubMedGoogle Scholar
  33. 33.
    Chuang PT, McMahon AP. Vertebrate hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature. 1999;397:617–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Koch A, Waha A, Hartmann W, Milde U, Goodyer CG, Sorensen N, et al. No evidence for mutations or altered expression of the suppressor of fused gene (sufu) in primitive neuroectodermal tumours. Neuropathol Appl Neurobiol. 2004;30:532–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Bar EE, Stearns D. New developments in medulloblastoma treatment: the potential of a cyclopamine-lovastatin combination. Expert Opin Investig Drugs. 2008;17:185–95.CrossRefPubMedGoogle Scholar
  36. 36.
    Carrillo J, Garcia-Aragoncillo E, Azorin D, Agra N, Sastre A, Gonzalez-Mediero I, et al. Cholecystokinin down-regulation by RNA interference impairs Ewing tumor growth. Clin Cancer Res. 2007;13:2429–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.CrossRefPubMedGoogle Scholar
  38. 38.
    May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB, et al. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993;13:7393–8.PubMedGoogle Scholar
  39. 39.
    Yi H, Fujimura Y, Ouchida M, Prasad DD, Rao VN, Reddy ES. Inhibition of apoptosis by normal and aberrant Fli-1 and erg proteins involved in human solid tumors and leukemias. Oncogene. 1997;14:1259–68.CrossRefPubMedGoogle Scholar
  40. 40.
    Capper D, Gaiser T, Hartmann C, Habel A, Mueller W, Herold-Mende C, et al. Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol. 2009;117:445–56.CrossRefPubMedGoogle Scholar
  41. 41.
    Jin F, Zhao L, Guo YJ, Zhao WJ, Zhang H, Wang HT, Shao T, Zhang SL, Wei YJ, Feng J, Jiang XB, Zhao HY (2010) Influence of etoposide on anti-apoptotic and multidrug resistance-associated protein genes in cd133 positive u251 glioblastoma stem-like cells. Brain Res (in press)Google Scholar
  42. 42.
    Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest. 2008;88:808–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Read TA, Fogarty MP, Markant SL, McLendon RE, Wei Z, Ellison DW, et al. Identification of cd15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell. 2009;15:135–47.CrossRefPubMedGoogle Scholar
  44. 44.
    Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E, et al. Multipotent cd15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 2009;69:4682–90.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2010

Authors and Affiliations

  • Mónica Enguita-Germán
    • 1
  • Paula Schiapparelli
    • 1
  • Juan A. Rey
    • 2
  • Javier S. Castresana
    • 1
    • 3
  1. 1.Brain Tumor Biology UnitUniversity of Navarra School of SciencesPamplonaSpain
  2. 2.Research UnitLa Paz University HospitalMadridSpain
  3. 3.Unidad de Biología de Tumores Cerebrales, CIFAUniversidad de NavarraPamplonaSpain

Personalised recommendations