Tumor Biology

, Volume 31, Issue 3, pp 157–163 | Cite as

MET overexpressing chordomas frequently exhibit polysomy of chromosome 7 but no MET activation through sarcoma-specific gene fusions

  • Florian GrabellusEmail author
  • Margarethe J. Konik
  • Karl Worm
  • Sien-Yi Sheu
  • Johannes A. P. van de Nes
  • Sebastian Bauer
  • Werner Paulus
  • Rupert Egensperger
  • Kurt W. Schmid
Research Article


Overexpression of MET and polysomy 7 was formerly demonstrated in chordomas. We investigated mesenchymal-epithelial transition factor (MET) protein expression and copy numbers of chromosome 7 in human chordomas. Furthermore, tumors were screened for gene fusions (PAX3-FKHR, ASPL-TFE3, and SYT-SSX) previously shown to be associated with MET activation in sarcomas. Tissue microarrays (TMAs) were constructed from 66 chordoma samples. MET protein expression was assessed by immunohistochemistry using an immunoreactive score (IRS, scores 0–12). fluorescence in situ hybridization (FISH) with a dual-color DNA probe (7q31) for MET amplification was performed on TMA sections and RT-PCR for PAX3-FKHR, ASPL-TFE3 (type 1 + 2), and SYT-SSX (type 1 + 2) gene fusions on punch biopsies. All tumors (n = 66) expressed MET protein. FISH analysis of 33 tumors lacked MET gene amplification but showed polysomy of chromosome 7 in 15 (45.5%) tumors (13 low and two high polysomies). Although, polysomy 7 showed an increasing incidence with escalating MET IRS, this finding was not statistically significant. PAX3-FKHR, ASPL-TFE3, or SYT-SSX gene fusions were not demonstrable (n = 52). We found MET protein expression in all chordomas. A clear influence of polysomy 7 on MET protein expression could not be statistically demonstrated for this cohort. Moreover, gene fusions with the ability to cause MET overexpression do not occur in chordomas.


MET protooncogene Chordoma PAX3-FKHR SYT-SSX ASPL-TFE3 



This study was supported by grants from the IFORES-program of the Faculty of Medicine of the University of Duisburg-Essen (IFORES 107-20360 to F. G.).

The authors wish to acknowledge the excellent and enthusiastic technical assistance of Nicole Cramer, Gabriele Ladwig, and Andrea Kutritz.

The authors certify that there is no actual or potential conflict of interest in relation to this article.


  1. 1.
    Fuchs B, Dickey ID, Yaszemski MJ, Inwards CY, Sim FH. Operative management of sacral chordoma. J Bone Joint Surg Am. 2005;87:2211–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Bergh P, Kindblom LG, Gunterberg B, Remotti F, Ryd W, Meis-Kindblom JM. Prognostic factors in chordoma of the sacrum and mobile spine: a study of 39 patients. Cancer. 2000;88:2122–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Weber DC, Rutz HP, Pedroni ES, Bolsi A, Timmermann B, Verwey J, et al. Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: the Paul Scherrer Institut experience. Int J Radiat Oncol Biol Phys. 2005;63:401–9.PubMedGoogle Scholar
  4. 4.
    Nguyen QN, Chang EL. Emerging role of proton beam radiation therapy for chordoma and chondrosarcoma of the skull base. Curr Oncol Rep. 2008;10:338–43.CrossRefPubMedGoogle Scholar
  5. 5.
    Naka T, Iwamoto Y, Shinohara N, Ushijima M, Chuman H, Tsuneyoshi M. Expression of c-met proto-oncogene product (c-MET) in benign and malignant bone tumors. Mod Pathol. 1997;10:832–8.PubMedGoogle Scholar
  6. 6.
    Naka T, Kuester D, Boltze C, Scheil-Bertram S, Samii A, Herold C, et al. Expression of hepatocyte growth factor and c-MET in skull base chordoma. Cancer. 2008;112:104–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Weinberger PM, Yu Z, Kowalski D, Joe J, Manger P, Psyrri A, et al. Differential expression of epidermal growth factor receptor, c-Met, and HER2/neu in chordoma compared with 17 other malignancies. Arch Otolaryngol Head Neck Surg. 2005;131:707–11.CrossRefPubMedGoogle Scholar
  8. 8.
    Ma PC, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003;22:309–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 1998;8:404–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005;225:1–26.CrossRefPubMedGoogle Scholar
  11. 11.
    Benvenuti S, Comoglio PM. The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol. 2007;213:316–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Danilkovitch-Miagkova A, Zbar B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest. 2002;109:863–7.PubMedGoogle Scholar
  13. 13.
    Coltella N, Manara MC, Cerisano V, Trusolino L, Di Renzo MF, Scotlandi K, et al. Role of the MET/HGF receptor in proliferation and invasive behavior of osteosarcoma. FASEB J. 2003;17:1162–4.PubMedGoogle Scholar
  14. 14.
    Diomedi-Camassei F, McDowell HP, De Ioris MA, Uccini S, Altavista P, Raschella G, et al. Clinical significance of CXC chemokine receptor-4 and c-Met in childhood rhabdomyosarcoma. Clin Cancer Res. 2008;14:4119–27.CrossRefPubMedGoogle Scholar
  15. 15.
    Rees H, Williamson D, Papanastasiou A, Jina N, Nabarro S, Shipley J, et al. The MET receptor tyrosine kinase contributes to invasive tumour growth in rhabdomyosarcomas. Growth Factors. 2006;24:197–208.CrossRefPubMedGoogle Scholar
  16. 16.
    Wallenius V, Hisaoka M, Helou K, Levan G, Mandahl N, Meis-Kindblom JM, et al. Overexpression of the hepatocyte growth factor (HGF) receptor (Met) and presence of a truncated and activated intracellular HGF receptor fragment in locally aggressive/malignant human musculoskeletal tumors. Am J Pathol. 2000;156:821–9.PubMedGoogle Scholar
  17. 17.
    Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res. 2003;63:7345–55.PubMedGoogle Scholar
  18. 18.
    Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7:504–16.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang YW, Graveel C, Shinomiya N, Vande Woude GF. Met decoys: will cancer take the bait? Cancer Cell. 2004;6:5–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Ginsberg JP, Davis RJ, Bennicelli JL, Nauta LE, Barr FG. Up-regulation of MET but not neural cell adhesion molecule expression by the PAX3-FKHR fusion protein in alveolar rhabdomyosarcoma. Cancer Res. 1998;58:3542–6.PubMedGoogle Scholar
  21. 21.
    Tsuda M, Davis IJ, Argani P, Shukla N, McGill GG, Nagai M, et al. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res. 2007;67:919–29.CrossRefPubMedGoogle Scholar
  22. 22.
    Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe. 1987;8:138–40.PubMedGoogle Scholar
  23. 23.
    Nascimento AG. World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. Lyon: IARCPress; 2002.Google Scholar
  24. 24.
    Ma Y, Lespagnard L, Durbecq V, Paesmans M, Desmedt C, Gomez-Galdon M, et al. Polysomy 17 in HER-2/neu status elaboration in breast cancer: effect on daily practice. Clin Cancer Res. 2005;11:4393–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang S, Hossein SM, Frenkel EP, Haley BB, Siddiqui MT, Gokaslan S, et al. Aneusomy 17 in breast cancer: its role in HER-2/neu protein expression and implication for clinical assessment of HER-2/neu status. Mod Pathol. 2002;15:137–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Alers JC, Krijtenburg PJ, Vissers KJ, van DH. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier. J Histochem Cytochem. 1999;47:703–10.PubMedGoogle Scholar
  27. 27.
    Krishnan B, Khanna G, Clohisy D. Gene translocations in musculoskeletal neoplasms. Clin Orthop Relat Res. 2008;466:2131–46.CrossRefPubMedGoogle Scholar
  28. 28.
    Naka T, Boltze C, Samii A, Samii M, Herold C, Ostertag H, et al. Expression of c-MET, low-molecular-weight cytokeratin, matrix metalloproteinases-1 and -2 in spinal chordoma. Histopathology. 2009;54:607–13.CrossRefPubMedGoogle Scholar
  29. 29.
    Brandal P, Bjerkehagen B, Danielsen H, Heim S. Chromosome 7 abnormalities are common in chordomas. Cancer Genet Cytogenet. 2005;160:15–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Scheil S, Bruderlein S, Liehr T, Starke H, Herms J, Schulte M, et al. Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes Chromosomes Cancer. 2001;32:203–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Downs-Kelly E, Yoder BJ, Stoler M, Tubbs RR, Skacel M, Grogan T, et al. The influence of polysomy 17 on HER2 gene and protein expression in adenocarcinoma of the breast: a fluorescent in situ hybridization, immunohistochemical, and isotopic mRNA in situ hybridization study. Am J Surg Pathol. 2005;29:1221–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Binh MB, Sastre-Garau X, Guillou L, de Pinieux G, Terrier P, Lagace R, et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol. 2005;29:1340–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Pauletti G, Godolphin W, Press MF, Slamon DJ. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene. 1996;13:63–72.PubMedGoogle Scholar
  34. 34.
    Oda Y, Sakamoto A, Saito T, Kinukawa N, Iwamoto Y, Tsuneyoshi M. Expression of hepatocyte growth factor (HGF)/scatter factor and its receptor c-MET correlates with poor prognosis in synovial sarcoma. Hum Pathol. 2000;31:185–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Eder JP, Vande Woude GF, Boerner SA, LoRusso PM. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15:2207–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Toschi L, Janne PA. Single-agent and combination therapeutic strategies to inhibit hepatocyte growth factor/MET signaling in cancer. Clin Cancer Res. 2008;14:5941–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Cantiani L, Manara MC, Zucchini C, De SP, Zuntini M, Valvassori L, et al. Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Res. 2007;67:7675–85.CrossRefPubMedGoogle Scholar
  38. 38.
    Guo Y, Xie J, Rubin E, Tang YX, Lin F, Zi X, et al. Frzb, a secreted Wnt antagonist, decreases growth and invasiveness of fibrosarcoma cells associated with inhibition of Met signaling. Cancer Res. 2008;68:3350–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Casali PG, Messina A, Stacchiotti S, Tamborini E, Crippa F, Gronchi A, et al. Imatinib mesylate in chordoma. Cancer. 2004;101:2086–97.CrossRefPubMedGoogle Scholar
  40. 40.
    Wachtel M, Runge T, Leuschner I, Stegmaier S, Koscielniak E, Treuner J, et al. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol. 2006;24:816–22.CrossRefPubMedGoogle Scholar
  41. 41.
    Aulmann S, Longerich T, Schirmacher P, Mechtersheimer G, Penzel R. Detection of the ASPSCR1-TFE3 gene fusion in paraffin-embedded alveolar soft part sarcomas. Histopathology. 2007;50:881–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Tamborini E, Agus V, Perrone F, Papini D, Romano R, Pasini B, et al. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest. 2002;82:609–18.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2010

Authors and Affiliations

  • Florian Grabellus
    • 1
    Email author
  • Margarethe J. Konik
    • 1
  • Karl Worm
    • 1
  • Sien-Yi Sheu
    • 1
  • Johannes A. P. van de Nes
    • 1
  • Sebastian Bauer
    • 2
  • Werner Paulus
    • 3
  • Rupert Egensperger
    • 1
    • 4
  • Kurt W. Schmid
    • 1
  1. 1.Institute of Pathology and NeuropathologyUniversity Hospital of Essen, University of Duisburg-EssenEssenGermany
  2. 2.Department of Internal Medicine and Cancer ResearchUniversity Hospital of Essen, University of Duisburg-EssenEssenGermany
  3. 3.Institute of NeuropathologyUniversity Hospital MünsterMünsterGermany
  4. 4.Center of Neuropathology and Prion ResearchLudwig-Maximilians-University of MünchenMünchenGermany

Personalised recommendations