Tumor Biology

, Volume 31, Issue 2, pp 103–112

Antibody array-based technologies for cancer protein profiling and functional proteomic analyses using serum and tissue specimens

Research Article


In the context of other proteomic technologies, targeted antibody arrays are strongly contributing for protein profiling and functional proteomics analyses in serum specimens. Protein-protein interactions, post-translational modifications, and interaction between protein and DNA or RNA can all shift the activity of a protein from what would have been predicted by its level of transcription. Functional proteomics studies the interaction of proteins within their cellular environment to determine how a given protein accomplishes its specific cellular task. Accordingly, the promise of protein profiling and functional proteomics is that by chronicling the function of aberrant or over-expressed proteins, it will be possible to characterize the mechanism of the disease-sustaining proteins. The further understanding of the disease networks will eventually lead to targeted cancer therapy and specific biomarkers for diagnosis, prognosis or therapeutic response prediction based on disease specific proteins. This review describes how such strategies reported to date in serum specimens may assist in characterizing tumor biology, and for the diagnosis, surveillance, prognosis, and potentially for predictive and therapeutic purposes for patients affected with solid and hematological neoplasias.


Antibody arrays Functional proteomics Serum 



desoxirribonucleic acid


ribonucleic acid


mass spectrometry


two-dimensional electrophoresis


tumor-associated antigen


cyanine 3


cyanine 5




prostate-specific antigen




surface plasmon resonance imaging


vascular endothelial growth factor


protein epitope signature tags


optimal cutting temperature


rolling circle amplification


Resonance light Scattering


Enhanced ChemiLuminescence


tyramide signal amplification


tumor interstitial fluid


cerebrospinal fluid


Human Proteome Organization


  1. 1.
    Azad NS, Rasool N, Annunziata CM, Minasian L, Whiteley G, Kohn EC. Proteomics in clinical trials and practice: present uses and future promise. Mol Cell Proteomics. 2006;5:1819–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Haab BB, Dunham MJ, Brown PO. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2001; 2:Research0004.Google Scholar
  3. 3.
    Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov. 2006;5:310–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Chan SM, Ermann J, Su L, Fathman CG, Utz PJ. Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med. 2004;10:1390–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Angenendt P, Glokler J, Murphy D, Lehrach H, Cahill DJ. Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem. 2002;309:253–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Kopf E, Zharhary D. Antibody arrays—an emerging tool in cancer proteomics. Int J Biochem Cell Biol. 2007;39:1305–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Sanchez-Carbayo M. Antibody arrays: technical considerations and clinical applications in cancer. Clin Chem. 2006;52:1651–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Borrebaeck CA, Wingren C. High-throughput proteomics using antibody microarrays: an update. Expert Rev Mol Diagn. 2007;7:673–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, et al. Autoantibody signatures in prostate cancer. N Engl J Med. 2005;353:1224–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Anderson KS, Labaer J. The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res. 2005;4:1123–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Nishizuka S, Charboneau L, Young L, Major S, Reinhold WC, Waltham M, et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A. 2003;100:14229–34.CrossRefPubMedGoogle Scholar
  12. 12.
    Petricoin 3rd EF, Bichsel VE, Calvert VS, Espina V, Winters M, Young L, et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol. 2005;23:3614–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Lash GE, Scaife PJ, Innes BA, Otun HA, Robson SC, Searle RF, et al. Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant. J Immunol Meth. 2006;309:205–8.CrossRefGoogle Scholar
  14. 14.
    De Jager W, Rijkers GT. Solid-phase and bead-based cytokine immunoassay: a comparison. Methods. 2006;38:294–303.CrossRefPubMedGoogle Scholar
  15. 15.
    Waterboer T, Sehr P, Pawlita M. Suppression of non-specific binding in serological Luminex assays. J Immunol Methods. 2006;309:200–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Dotan N, Altstock RT, Schwarz M, Dukler A. Anti-glycan antibodies as biomarkers for diagnosis and prognosis. Lupus. 2006;15:442–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, et al. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods. 2007;4:437–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Nettikadan S, Radke K, Johnson J, Xu J, Lynch M, Mosher C, et al. Detection and quantification of protein biomarkers from fewer than 10 cells. Mol Cell Proteomics. 2006;5:895–901.CrossRefPubMedGoogle Scholar
  19. 19.
    Zajac A, Song D, Qian W, Zhukov T. Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces. 2007;58:309–14.CrossRefPubMedGoogle Scholar
  20. 20.
    Li Y, Lee HJ, Corn RM. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem. 2007;79:1082–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Bock C, Coleman M, Collins B, Davis J, Foulds G, Gold L, et al. Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics. 2004;4:609–18.CrossRefPubMedGoogle Scholar
  22. 22.
    Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics. 2003;3:56–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Schweitzer B, Roberts S, Grimwade B, Shao W, Wang M, Fu Q, et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol. 2002;20:359–65.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou H, Bouwman K, Schotanus M, Verweij C, Marrero JA, Dillon D, et al. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol. 2004;5:R28.CrossRefPubMedGoogle Scholar
  25. 25.
    Shao W, Zhou Z, Laroche I, Lu H, Zong Q, Patel DD, et al. Optimization of rolling-circle amplified protein microarrays for multiplexed protein profiling. J Biomed Biotechnol. 2003;5:299–307.CrossRefGoogle Scholar
  26. 26.
    Saviranta P, Okon R, Brinker A, Warashina M, Eppinger J, Geierstanger BH. Evaluating sandwich immunoassays in microarray format in terms of the ambient analyte regime. Clin Chem. 2004;50:1907–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Huang R, Lin Y, Shi Q, Flowers L, Ramachandran S, Horowitz IR, et al. Enhanced protein profiling arrays with ELISA-based amplification for high-throughput molecular changes of tumor patients' plasma. Clin Cancer Res. 2004;10:598–609.CrossRefPubMedGoogle Scholar
  28. 28.
    Varnum SM, Woodbury RL, Zangar RC. A protein microarray ELISA for screening biological fluids. Methods Mol Biol. 2004;264:161–72.PubMedGoogle Scholar
  29. 29.
    Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am J Pathol. 2006;168:93–103.CrossRefPubMedGoogle Scholar
  30. 30.
    Lin Y, Huang R, Chen LP, Lisoukov H, Lu ZH, Li S, et al. Profiling of cytokine expression by biotin-labeled-based protein arrays. Proteomics. 2003;3:1750–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Vazquez-Martin A, Colomer R, Menendez JA. Protein array technology to detect HER2 (erbB-2)-induced 'cytokine signature' in breast cancer. Eur J Cancer. 2007;43:1117–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Celis JE, Gromov P, Cabezón T, Moreira JM, Ambartsumian N, Sandelin K, et al. Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics. 2004;3:327–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Celis JE, Moreira JM, Cabezón T, Gromov P, Friis E, Rank F, et al. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics. 2005;4:492–522.CrossRefPubMedGoogle Scholar
  34. 34.
    Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin 3rd EF, Liotta LA. CSF proteome: a protein repository for potential biomarker identification. Expert Rev Proteomics. 2005;2:57–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Bartling B, Hofmann HS, Boettger T, Hansen G, Burdach S, Silber RE, et al. Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer. 2005;49:145–54.CrossRefPubMedGoogle Scholar
  36. 36.
    Hudelist G, Pacher-Zavisin M, Singer CF, Holper T, Kubista E, Schreiber M, et al. Use of high-throughput protein array for profiling of differentially expressed proteins in normal and malignant breast tissue. Breast Cancer Res Treat. 2004;86:281–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Ek S, Andréasson U, Hober S, Kampf C, Pontén F, Uhlén M, et al. From gene expression analysis to tissue microarrays—a rational approach to identify therapeutic and diagnostic targets in lymphoid malignancies. Mol Cell Proteomics. 2006;5:1072–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Uhlén M, Björling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4:1920–32.CrossRefPubMedGoogle Scholar
  39. 39.
    Kellner U, Steinert R, Seibert V, Heim S, Kellner A, Schulz HU, et al. Epithelial cell preparation for proteomic and transcriptomic analysis in human pancreatic tissue. Pathol Res Pract. 2004;200:155–63.CrossRefPubMedGoogle Scholar
  40. 40.
    Sanchez-Carbayo M. Dissecting cancer serum protein profiles using antibody arrays. Methods Mol Biol. 2008;428:263–87.CrossRefPubMedGoogle Scholar
  41. 41.
    Schwenk JM, Gry M, Rimini R, Uhlén M, Nilsson P. Antibody suspension bead arrays within serum proteomics. J Proteome Res. 2008;7:3168–79.CrossRefPubMedGoogle Scholar
  42. 42.
    Chen S, Haab BB. Analysis of glycans on serum proteins using antibody microarrays. Methods Mol Biol. 2009;520:39–58.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2010

Authors and Affiliations

  1. 1.Tumor Markers Group, Spanish National Cancer Research CenterMadridSpain

Personalised recommendations