Molecular & Cellular Toxicology

, Volume 15, Issue 2, pp 185–197 | Cite as

Inhibition of PPARα target genes during cyclosporine A-induced nephrotoxicity and hepatotoxicity

  • Eun Hee Lee
  • Soojin Kim
  • Mi-Sun Choi
  • Se-Myo Park
  • Kyoung-Sik Moon
  • Seokjoo YoonEmail author
  • Jung-Hwa OhEmail author
Original Paper



Cyclosporine A (CsA) is an immunosuppressant used to improve the rate of acute rejection and graft survival in transplant patients. However, CsA has serious adverse effects including high blood pressure as well as liver and kidney dysfunction. Although several toxicological mechanisms of CsA have been suggested, the investigations have been limited to evaluate the initiating events of CsA-induced toxicity in liver and kidney. To understand the events during initial hepatotoxicity and nephrotoxicity induced by CsA, we analyzed the comparative gene expression profiles of CsA-treated rats.


We performed the microarray experiment using Affymetrix GeneChip Rat 230 2.0 array from the liver and kidney of CsA-treated rats (10 and 25 mg/kg of body weight, once daily for 4 weeks). Differentially expressed genes (DEGs) were selected using the Gene- Spring program (analysis of variance test, fold change ≥1.3), and functional analysis of the DEGs was conducted using the Ingenuity Pathways Analysis program.


The most significant biofunctions of the DEGs were fatty acid oxidation, immune response, and molecular transport. In particular, fatty acid β-oxidation and lipopolysaccharide/interleukin-mediated inhibition of retinoid X receptor function were selected as significantly changed gene sets for each DEG in the liver and kidney. Fatty acid β-oxidation is closely correlated with peroxisome proliferator activated receptor α (PPARα), which regulates the expression of genes involved in lipid and glucose metabolism.


In this study, Pparα was identified as a common upstream regulator of the DEGs, and the expression of genes related to lipid metabolism, as well as the damage of renal tubules, was significantly influenced by CsA treatment. We confirmed that fatty acid β-oxidation-related genes are downregulated by CsA treatment in the liver and kidney and using quantitative real-time RT-PCR. Our findings suggest that PPARα agonists may be candidates for reducing the toxicity of CsA treatment and encourage translational research.


Cyclosporine A (CsA) PPARα Fatty acid β-oxidation Hepatotoxicity Nephrotoxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13273_2019_22_MOESM1_ESM.pdf (151 kb)
Inhibition of PPARα target genes during cyclosporine A-induced nephrotoxicity and hepatotoxicity


  1. 1.
    Borel, J. F., Feurer, C., Gubler, H. U. & Stahelin, H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6, 468–475 (1976).CrossRefGoogle Scholar
  2. 2.
    Beauchesne, P. R., Chung, N. S. & Wasan, K. M. Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm 33, 211–220, doi: (2007).CrossRefGoogle Scholar
  3. 3.
    Utine, C. A., Stern, M. & Akpek, E. K. Clinical review: topical ophthalmic use of cyclosporin A. Ocul Immunol Inflamm 18, 352–361, doi: (2010).CrossRefGoogle Scholar
  4. 4.
    Kronke, M. et al. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci USA 81, 5214–5218 (1984).CrossRefGoogle Scholar
  5. 5.
    Herold, K. C., Lancki, D. W., Moldwin, R. L. & Fitch, F. W. Immunosuppressive effects of cyclosporin A on cloned T cells. J Immunol 136, 1315–1321 (1986).Google Scholar
  6. 6.
    Flanagan, W. M., Corthesy, B., Bram, R. J. & Crabtree, G. R. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352, 803–807, doi: (1991).CrossRefGoogle Scholar
  7. 7.
    Northrop, J. P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502, doi: (1994).CrossRefGoogle Scholar
  8. 8.
    Shaw, K. T. et al. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc Natl Acad Sci USA 92, 11205–11209 (1995).CrossRefGoogle Scholar
  9. 9.
    Timmerman, L. A., Clipstone, N. A., Ho, S. N., Northrop, J. P. & Crabtree, G. R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–840, doi: (1996).CrossRefGoogle Scholar
  10. 10.
    Myers, B. D., Ross, J., Newton, L., Luetscher, J. & Perlroth, M. Cyclosporine-associated chronic nephropathy. N Engl J Med 311, 699–705, doi:10.1056/NEJM198409133111103 (1984).CrossRefGoogle Scholar
  11. 11.
    da Silva, J. B., de Melo Lima, M. H. & Secoli, S. R. Influence of cyclosporine on the occurrence of nephrotoxicity after allogeneic hematopoietic stem cell transplantation: a systematic review. Rev Bras Hematol Hemoter 36, 363–368, doi:10.1016/j.bjhh.2014.03.010 (2014).CrossRefGoogle Scholar
  12. 12.
    Akashi, M., Tanaka, A. & Takikawa, H. Effect of cyclosporin A on the biliary excretion of cholephilic compounds in rats. Hepatol Res 34, 193–198, doi:10.1016/j.hepres.2005.08.013 (2006).CrossRefGoogle Scholar
  13. 13.
    Noe, A. et al. High incidence of severe cyclosporine neurotoxicity in children affected by haemoglobinopaties undergoing myeloablative haematopoietic stem cell transplantation: early diagnosis and prompt intervention ameliorates neurological outcome. Ital J Pediatr 36, 14, doi:10.1186/1824-7288-36-14 (2010).CrossRefGoogle Scholar
  14. 14.
    Ballantyne, C. M. et al. Effects of cyclosporine therapy on plasma lipoprotein levels. Jama 262, 53–56 (1989).CrossRefGoogle Scholar
  15. 15.
    Aliabadi, H. M., Spencer, T. J., Mahdipoor, P., Lavasanifar, A. & Brocks, D. R. Insights into the effects of hyperlipoproteinemia on cyclosporine A biodistribution and relationship to renal function. AAPS J 8, E672–681, doi: 10.1208/aapsj080477 (2006).CrossRefGoogle Scholar
  16. 16.
    Ponnuchamy, B. & Khalil, R. A. Cellular mediators of renal vascular dysfunction in hypertension. Am J Physiol Regul Integr Comp Physiol 296, R1001–1018, doi: 10.1152/ajpregu.90960.2008 (2009).CrossRefGoogle Scholar
  17. 17.
    Burdmann, E. A., Andoh, T. F., Yu, L. & Bennett, W. M. Cyclosporine nephrotoxicity. Semin Nephrol 23, 465–476 (2003).CrossRefGoogle Scholar
  18. 18.
    Murray, B. M., Paller, M. S. & Ferris, T. F. Effect of cyclosporine administration on renal hemodynamics in conscious rats. Kidney Int 28, 767–774 (1985).CrossRefGoogle Scholar
  19. 19.
    Kurtz, A., Della Bruna, R. & Kuhn, K. Cyclosporine A enhances renin secretion and production in isolated juxtaglomerular cells. Kidney Int 33, 947–953 (1988).CrossRefGoogle Scholar
  20. 20.
    Lassila, M. Interaction of cyclosporine A and the reninangiotensin system; new perspectives. Curr Drug Metab 3, 61–71 (2002).CrossRefGoogle Scholar
  21. 21.
    Roullet, J. B., Xue, H., McCarron, D. A., Holcomb, S. & Bennett, W. M. Vascular mechanisms of cyclosporin- induced hypertension in the rat. J Clin Investig 93, 2244–2250, doi:10.1172/JCI117222 (1994).CrossRefGoogle Scholar
  22. 22.
    Oriji, G. K. & Schanz, N. Nitric oxide in CsA-induced hypertension: role of beta-adrenoceptor antagonist and thromboxane A2. Prostaglandins Leukot Essent Fatty Acids 65, 259–263, doi:10.1054/plef.2001.0323 (2001).CrossRefGoogle Scholar
  23. 23.
    Stone, B. G. et al. Cyclosporin A-induced cholestasis. The mechanism in a rat model. Gastroenterology 93, 344–351 (1987).CrossRefGoogle Scholar
  24. 24.
    Ansede, J. H., Smith, W. R., Perry, C. H., St Claire, R. L., 3rd & Brouwer, K. R. An in vitro assay to assess transporter-based cholestatic hepatotoxicity using sandwichcultured rat hepatocytes. Drug Metab Dispos 38, 276–280, doi:10.1124/dmd.109.028407 (2010).CrossRefGoogle Scholar
  25. 25.
    Son, M. Y. et al. Distinctive genomic signature of neural and intestinal organoids from familial Parkinson’s disease patient-derived induced pluripotent stem cells. Neuropathol Appl Neurobiol, doi:10.1111/nan.12396 (2017).Google Scholar
  26. 26.
    Son, M. Y. et al. Biomarker discovery by modeling Behcet’s disease with patient-specific human induced Pluripotent stem cells. Stem Cells Dev 26, 133–145, doi:10.1089/scd.2016.0181 (2017).CrossRefGoogle Scholar
  27. 27.
    Jaramillo-Juarez, F., Rodriguez-Vazquez, M. L., Namorado, M. C., Martin, D. & Reyes, J. L. Acidosis and weight loss are induced by cyclosporin A in uninephrectomized rats. Pediatr Nephrol 14, 122–127 (2000).CrossRefGoogle Scholar
  28. 28.
    Tsuda, K. et al. Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naive T cells into cytokine-producing mature T cells. PLoS One 7, e31465, doi:10.1371/journal.pone.0031465 (2012).CrossRefGoogle Scholar
  29. 29.
    O’Brien, T. W., O’Brien, B. J. & Norman, R. A. Nuclear MRP genes and mitochondrial disease. Gene 354, 147–151, doi:10.1016/j.gene.2005.03.026 (2005).CrossRefGoogle Scholar
  30. 30.
    Zucker, S. N. et al. Nrf2 amplifies oxidative stress via induction of Klf9. Mol Cell 53, 916–928, doi:10.1016/ j.molcel.2014.01.033 (2014).CrossRefGoogle Scholar
  31. 31.
    Wolf, A. et al. Cyclosporine A-induced oxidative stress in rat hepatocytes. J Pharmacol Exp Ther 280, 1328–1334 (1997).Google Scholar
  32. 32.
    O’Connell, S., Tuite, N., Slattery, C., Ryan, M. P. & McMorrow, T. Cyclosporine A-induced oxidative stress in human renal mesangial cells: a role for ERK 1/2 MAPK signaling. Toxicol Sci 126, 101–113, doi:10.1093/toxsci/kfr330 (2012).CrossRefGoogle Scholar
  33. 33.
    Wang, N., Silver, D. L., Thiele, C. & Tall, A. R. ATPbinding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem 276, 23742–23747, doi:10.1074/jbc.M102348200 (2001).CrossRefGoogle Scholar
  34. 34.
    Le Goff, W. et al. Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arter Thromb Vasc Biol 24, 2155–2161, doi:10.1161/01.ATV.0000144811.94581.52 (2004).CrossRefGoogle Scholar
  35. 35.
    Pullen, T. J. et al. Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic beta-cells leads to relative hyperinsulinism during exercise. Diabetes 61, 1719–1725, doi:10.2337/db11-1531 (2012).CrossRefGoogle Scholar
  36. 36.
    Zhang, S., Hulver, M. W., McMillan, R. P., Cline, M. A. & Gilbert, E. R. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond) 11, 10, doi:10.1186/1743-7075-11-10 (2014).CrossRefGoogle Scholar
  37. 37.
    Staiger, H. et al. Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans. Diabetes 58, 579–589, doi: 10.2337/db07-1438 (2009).CrossRefGoogle Scholar
  38. 38.
    Mandard, S. et al. The direct peroxisome proliferatoractivated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem 279, 34411–34420, doi:10.1074/jbc.M403058200 (2004).CrossRefGoogle Scholar
  39. 39.
    Torres, P. S. et al. Contribution of CD3 gamma to TCR regulation and signaling in human mature T lymphocytes. Int Immunol 14, 1357–1367 (2002).CrossRefGoogle Scholar
  40. 40.
    Lopez-Hernandez, F. J. & Lopez-Novoa, J. M. Potential utility of PPARalpha activation in the prevention of ischemic and drug-induced acute renal damage. Kidney Int 76, 1022–1024, doi:10.1038/ki.2009.229 (2009).CrossRefGoogle Scholar
  41. 41.
    Peeters, A. & Baes, M. Role of PPARalpha in Hepatic Carbohydrate Metabolism. PPAR Res 2010, doi:10. 1155/2010/572405 (2010).Google Scholar
  42. 42.
    Grygiel-Gorniak, B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications - a review. Nutr J 13, 17, doi:10.1186/1475-2891-13-17 (2014).CrossRefGoogle Scholar
  43. 43.
    Francis, G. A., Annicotte, J. S. & Auwerx, J. PPARalpha effects on the heart and other vascular tissues. Am J Physiol Heart Circ Physiol 285, H1–9, doi:10. 1152/ajpheart.01118.2002 (2003).CrossRefGoogle Scholar
  44. 44.
    Roszer, T. & Ricote, M. PPARs in the renal regulation of systemic blood pressure. PPAR Res 2010, 698730, doi: 10.1155/2010/698730 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  • Eun Hee Lee
    • 1
  • Soojin Kim
    • 1
  • Mi-Sun Choi
    • 1
  • Se-Myo Park
    • 1
  • Kyoung-Sik Moon
    • 1
  • Seokjoo Yoon
    • 1
    • 2
    Email author
  • Jung-Hwa Oh
    • 1
    Email author
  1. 1.Korea Institute of Toxicology (KIT)DaejeonRepublic of Korea
  2. 2.Department of Human and Environmental ToxicologyUniversity of Science & TechnologyDaejeonRepublic of Korea

Personalised recommendations