Advertisement

Molecular & Cellular Toxicology

, Volume 15, Issue 2, pp 111–121 | Cite as

Mitigating effect of fermented Korean red ginseng extract with yeast and probiotics in 1-chloro-2,4-dinitrobenzene-induced skin allergic inflammation

  • Se Chan Kang
  • Sung Ryul Lee
  • Mediana Hadiwidjaja
  • Manorma Negi
  • Hyun Jung Koo
  • Seon-A Jang
  • Jeong-Eun Kwon
  • Hyejung Hong
  • Jung Dae Lim
  • Seung Namkoong
  • Kyungho Kim
  • Eun-Hwa SohnEmail author
Original Paper
  • 8 Downloads

Abstract

Backgrounds

Atopic dermatitis (AD) frequently affects both infants and adults, impacting on the quality of life of the individual and imposing a significant psychosocial burden. The efficacy against AD-like skin lesions of the fermented form of Korea red ginseng (FRG), that contains ginsenoside metabolites, has not been investigated.

Methods

FRG was prepared after fermentation of Korean red ginseng (KRG) extract in the presence of yeast and probiotics. The effects of FRG on skin allergic inflammation were then investigated by examining the frequency of scratching, and assessing the levels of representative allergic markers in 1-chloro-2,4-dinitrobenzene (DNCB)-challenged Balb/c mice. After two weeks of DNCB challenge, vehicle, dexamethasone (positive control), and FRG (10 and 50 μg/mL) were applied topically on skin lesions for 2 weeks. At the end of the experiment, scratching behavior, immunoglobulin E (IgE), and interleukin 4 (IL-4) levels were measured. The status of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) were determined by immunoblot analysis in DNCB-treated primary splenocytes.

Results

Topical administration of FRG significantly suppressed scratching behavior, serum IgE, and IL-4 levels (P<0.05, n=5/group). In addition, FRG treatment significantly decreased the mRNA expression levels of IL-4 and IL-10 in DNCB-exposed splenocytes (P<0.05, n=6/group). Moreover, FRG suppressed DNCB-induced phosphorylation of p38 MAPK and activation of NF-κB.

Conclusion

FRG could ameliorate skin allergic inflammation via suppression of p38 MAPK and NF-κB. Therefore, FRG may be a potential therapeutic agent for the prevention and/or treatment of atopic-like dermatitis.

Keywords

Atopic-like dermatitis Fermentation Immunoglobulin E Interleukin Mitogen-activated protein kinase Nuclear factor kappa-B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weidinger, S. & Novak, N. Atopic dermatitis. Lancet 387, 1109–1122 (2016).CrossRefGoogle Scholar
  2. 2.
    Leung, D. Y. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J dAllergy Clin Immunol {b105}, 860–876 (2000).CrossRefGoogle Scholar
  3. 3.
    Akdis, C. A., Akdis, M., Trautmann, A. & Blaser, K. Immune regulation in atopic dermatitis. Curr Opin Immunol 12, 641–646 (2000).CrossRefGoogle Scholar
  4. 4.
    Leung, D. Y. & Bieber, T. Atopic dermatitis. Lancet 361, 151–160 (2003).CrossRefGoogle Scholar
  5. 5.
    Nickoloff, B. J. & Naidu, Y. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J Am Acad Dermatol 30, 535–546 (1994).CrossRefGoogle Scholar
  6. 6.
    Novak, N., Bieber, T. & Leung, D. Y. Immune mechanisms leading to atopic dermatitis. J Allergy Clin Immunol 112, S128–139 (2003).CrossRefGoogle Scholar
  7. 7.
    Ellis, C. N. et al. Cost-effectiveness analysis of tacrolimus ointment versus high-potency topical corticosteroids in adults with moderate to severe atopic dermatitis. J Am Acad Dermatol 48, 553–563 (2003).CrossRefGoogle Scholar
  8. 8.
    Feizy, V. & Ghobadi, A. Atopic dermatitis and systemic autoimmune diseases: a descriptive cross sectional study. Dermatol Online J 12, 3 (2006).Google Scholar
  9. 9.
    Homey, B., Steinhoff, M., Ruzicka, T. & Leung, D. Y. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 118, 178–189 (2006).CrossRefGoogle Scholar
  10. 10.
    Lester, M. R., Hofer, M. F., Gately, M., Trumble, A. & Leung, D. Y. Down-regulating effects of IL-4 and IL-10 on the IFN-gamma response in atopic dermatitis. J Immunol 154, 6174–6181 (1995).Google Scholar
  11. 11.
    Moverare, R., Elfman, L., Stalenheim, G. & Bjornsson, E. Study of the Th1/Th2 balance, including IL-10 production, in cultures of peripheral blood mononuclear cells from birch-pollen-allergic patients. Allergy 55, 171–175 (2000).CrossRefGoogle Scholar
  12. 12.
    Muraille, E. & Leo, O. Revisiting the Th1/Th2 paradigm. Scand J Immunol 47, 1–9 (1998).CrossRefGoogle Scholar
  13. 13.
    Kawamoto, M. et al. IL-10 plays an important role as an immune-modulator in the pathogenesis of atopic diseases. Mol Med Rep 1, 837–842 (2008).Google Scholar
  14. 14.
    Osinka, K., Dumycz, K., Kwiek, B. & Feleszko, W. Novel therapeutic approaches to atopic dermatitis. Arch Immunol Ther Exp 66, 171–181 (2017).CrossRefGoogle Scholar
  15. 15.
    Leung, D. Y. M. Atopic dermatitis: New insights and opportunities for therapeutic intervention. J Allergy Clin Immunol 105, 860–876 (2000).CrossRefGoogle Scholar
  16. 16.
    Schäcke, H., Döcke, W.-D. & Asadullah, K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96, 23–43 (2002).CrossRefGoogle Scholar
  17. 17.
    Lee, S. R. et al. Non-genomic effect of glucocorticoids on cardiovascular system. Pflugers Arch 464, 549–559 (2012).CrossRefGoogle Scholar
  18. 18.
    Brunner, P. M. et al. The atopic dermatitis blood signature is characterized by increases in inflammatory and cardiovascular risk proteins. Scientific Reports 7, 8707 (2017).CrossRefGoogle Scholar
  19. 19.
    Bae, H. M. et al. Antioxidant activities of ginseng seeds treated by autoclaving. J Ginseng Res 36, 411–417 (2012).CrossRefGoogle Scholar
  20. 20.
    Keum, Y. S. et al. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 150, 41–48 (2000).CrossRefGoogle Scholar
  21. 21.
    Jung, J. H., Kang, I. G., Kim, D. Y., Hwang, Y. J. & Kim, S. T. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis. J Ginseng Res 37, 167–175 (2013).CrossRefGoogle Scholar
  22. 22.
    Kimura, Y., Sumiyoshi, M. & Sakanaka, M. Effects of ginsenoside Rb (1) on skin changes. J Biomed Biotechnol 2012, 946242 (2012).Google Scholar
  23. 23.
    Samukawa, K. et al. Red ginseng inhibits scratching behavior associated with atopic dermatitis in experimental animal models. J Pharmacol Sci 118, 391–400 (2012).CrossRefGoogle Scholar
  24. 24.
    Tachikawa, E. et al. Effects of ginseng saponins on responses induced by various receptor stimuli. Eur J Pharmacol 369, 23–32 (1999).CrossRefGoogle Scholar
  25. 25.
    Izuhara, K., Yanagihara, Y., Hamasaki, N., Shirakawa, T. & Hopkin, J. M. Atopy and the human IL-4 receptor alpha chain. J Allergy Clin Immunol 106, S65–71 (2000).CrossRefGoogle Scholar
  26. 26.
    Yun, J.-W., Kim, H., Kang, H.-J., Koh, J.-Y. & Kim, B.-H. Comparative evaluation of animal models for atopic dermatitis in NC/Nga mice. Lab Anim Res 24, 59–66 (2008).Google Scholar
  27. 27.
    Sohn, E. H. et al. Effects of Korean red ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. J Ginseng Res 35, 479–486 (2011).CrossRefGoogle Scholar
  28. 28.
    Amidon, G. L., Lennernas, H., Shah, V. P. & Crison, J. R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12, 413–420 (1995).CrossRefGoogle Scholar
  29. 29.
    Tawab, M. A., Bahr, U., Karas, M., Wurglics, M. & Schubert-Zsilavecz, M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 31, 1065–1071 (2003).CrossRefGoogle Scholar
  30. 30.
    Tanaka, T., Matsuo, Y. & Kouno, I. Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci 11, 14–40 (2009).CrossRefGoogle Scholar
  31. 31.
    Bae, S. H. et al. Changes of ginsenoside content by mushroom mycelial fermentation in red ginseng extract. J Ginseng Res 35, 235–242 (2011).CrossRefGoogle Scholar
  32. 32.
    Jang, S.-A. et al. Gamma irradiation-induced liver injury and its amelioration by red ginseng extract. Mol Cell Toxicol 13, 461–469 (2017).CrossRefGoogle Scholar
  33. 33.
    Park, H.-J. et al. The comparative study of anti-allergic and anti-inflammatory effects by fermented red ginseng and red ginseng. Korean J Plant Res 23, 415–422 (2010).Google Scholar
  34. 34.
    Lim, J. D. et al. Fucoidan from Fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells. Mar Drugs 13, 1051–1067 (2015).CrossRefGoogle Scholar
  35. 35.
    Koo, H. J. et al. Effects of red ginseng on the regulation of cyclooxygenase-2 of spleen cells in whole-body gamma irradiated mice. Food Chem Toxicol 62, 839–846 (2013).CrossRefGoogle Scholar
  36. 36.
    Overbergh, L., Valckx, D., Waer, M. & Mathieu, C. Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine 11, 305–312 (1999).CrossRefGoogle Scholar
  37. 37.
    Yang, L. et al. Essential role of nuclear factor kappaB in the induction of eosinophilia in allergic airway inflammation. J Exp Med 188, 1739–1750 (1998).CrossRefGoogle Scholar
  38. 38.
    Hai, C. M. Mechanistic systems biology of inflammatory gene expression in airway smooth muscle as tool for asthma drug development. Curr Drug Discov Technol 5, 279–288 (2008).CrossRefGoogle Scholar
  39. 39.
    Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68, 320–344 (2004).CrossRefGoogle Scholar
  40. 40.
    Nam, K.-Y. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng C. A. Meyer). J Ginseng Res 29, 1–18 (2005).CrossRefGoogle Scholar
  41. 41.
    Lee, H.-S. et al. Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: in vitro and animal study. J Med Food 15, 1015–1023 (2012).CrossRefGoogle Scholar
  42. 42.
    Park, E. K., Choo, M. K., Kim, E. J., Han, M. J. & Kim, D. H. Antiallergic activity of ginsenoside Rh2. Biol Pharm Bull 26, 1581–1584 (2003).CrossRefGoogle Scholar
  43. 43.
    Peti, W. & Page, R. Molecular basis of MAP kinase regulation. Protein Sci 22, 1698–1710 (2013).CrossRefGoogle Scholar
  44. 44.
    Ipaktchi, K. et al. Topical p38MAPK inhibition reduces dermal inflammation and epithelial apoptosis in burn wounds. Shock 26, 201–209 (2006).CrossRefGoogle Scholar
  45. 45.
    Hengge, U. R., Ruzicka, T., Schwartz, R. A. & Cork, M. J. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol 54, 1–15; quiz 16-18 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  • Se Chan Kang
    • 1
  • Sung Ryul Lee
    • 2
  • Mediana Hadiwidjaja
    • 3
  • Manorma Negi
    • 1
  • Hyun Jung Koo
    • 4
  • Seon-A Jang
    • 1
  • Jeong-Eun Kwon
    • 1
  • Hyejung Hong
    • 5
  • Jung Dae Lim
    • 5
  • Seung Namkoong
    • 5
  • Kyungho Kim
    • 6
  • Eun-Hwa Sohn
    • 5
    Email author
  1. 1.Department of Oriental Medicine BiotechnologyCollege of Life Sciences, Kyung Hee UniversityYonginRepublic of Korea
  2. 2.Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease CenterCollege of Medicine, Inje UniversityBusanRepublic of Korea
  3. 3.Department of Applied BiotechnologyAjou UniversitySuwonRepublic of Korea
  4. 4.Department of Medicinal and Industrial CropsKorea National College of Agriculture and FisheriesJeonjuRepublic of Korea
  5. 5.College of Health ScienceKangwon National UniversitySamcheokRepublic of Korea
  6. 6.School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations