Advertisement

Molecular & Cellular Toxicology

, Volume 15, Issue 1, pp 103–109 | Cite as

Sumoylated α-synuclein translocates into the nucleus by karyopherin α6

  • Seungjin Ryu
  • Inkyung Baek
  • Hyunjeong LiewEmail author
Original Paper
  • 10 Downloads

Abstract

Backgrounds

α-Synuclein (α-SYN) is uniquely found in the brains of Parkinson’s disease (PD) patients and it has been the major target of PD research for many years. The translocation of α-SYN into the nucleus of neuronal cells is a well-known fact but the mode of nuclear entry and its functions thereafter are not well defined.

Methods

By utilizing a model cell line and primary cultured neurons, we have investigated a plausible mechanism of α-SYN nuclear translocation and its pathophysiological roles in the nucleus of cells with neuronal phenotypes.

Results

We, first, identified that cytosolic α-SYN proteins bind to karyopherin alpha6 proteins only after sumoylation (i.e. SUMO2/3 binding) and then transits through the nuclear pore complex (NPC) as a complexed entity.

Conclusion

We investigated that the nuclear translocation of α-SYN is critically required for its nuclear translocation and that this process is mediated by karyopherin alpha6.

Keywords

α-Synuclein (α-SYN) Small ubiquitin-related modifier proteins (SUMO) Karyopherin (KPNA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Masliah, E., Iwai, A., Mallory, M., Uéda, K. & Saitoh, T. Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer’s disease. Am J Pathol 148, 201–210 (1996).Google Scholar
  2. 2.
    Maroteaux, L., Campanelli, J. T. & Scheller, R. H. Synuclein: A Neuron-Specific Protein Localized to the Nucleus and Presynaptic Nerve Terminal. J Neurosci 8, 2804–2815 (1988).CrossRefGoogle Scholar
  3. 3.
    Julia, M., George, H. J., Woods, W. S. & Clayton, D. F. Characterization of a Novel Protein Regulated during the Critical Period for Song Learning in the Zebra Finch. Neuron 15, 361–372 (1995).CrossRefGoogle Scholar
  4. 4.
    Iwai, A. et al. The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475 (1995).CrossRefGoogle Scholar
  5. 5.
    Goers, J. et al. Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 42, 8465–8471 (2003).CrossRefGoogle Scholar
  6. 6.
    Xu, S. et al. Oxidative stress induces nuclear translocation of C-terminus of alpha-synuclein in dopaminergic cells. Biochem Biophys Res Commun 342, 330–335 (2006).CrossRefGoogle Scholar
  7. 7.
    Kontopoulos, E., Parvin, J. D. & Feany, M. B. alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15, 3012–3023 (2006).CrossRefGoogle Scholar
  8. 8.
    Aaronson, R. P. & Blobel, G. On the attachment of the nuclear pore complex. J Cell Biol 62, 746–754 (1974).CrossRefGoogle Scholar
  9. 9.
    Akey, C. W. Interactions and Structure of the Nuclear Pore Complex Revealed by Cryo-electron Microscopy. J Cell Biol 109, 955–970 (1989).CrossRefGoogle Scholar
  10. 10.
    Dwyer, N. & Blobel, G. A modified procedurefor the isolation of pore complex-lamina fractionation from rat liver nuclei. J Cell Biol 70, 581–591 (1976).CrossRefGoogle Scholar
  11. 11.
    Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158, 915–927 (2002).CrossRefGoogle Scholar
  12. 12.
    Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Review Mol Cell Biol 4, 757–766 (2003).CrossRefGoogle Scholar
  13. 13.
    Wente, S. R. Gatekeepers of the Nucleus. Science 288, 1374–1377 (2000).CrossRefGoogle Scholar
  14. 14.
    Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Ann Rev Cell Dev Biol 15, 607–660 (1999).CrossRefGoogle Scholar
  15. 15.
    Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390, doi:10.1126/science.1104808 (2004).CrossRefGoogle Scholar
  16. 16.
    Blobel, G. & Moore, M. S. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663 (1993).CrossRefGoogle Scholar
  17. 17.
    Quimby, B. B. & Dasso, M. The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol 15, 338–344 (2003).CrossRefGoogle Scholar
  18. 18.
    Blobel, G. Karyopherins and nuclear import. Curr Opin Struc Biol 11, 703–715 (2001).CrossRefGoogle Scholar
  19. 19.
    Conti, E. & Izaurralde, E. Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol 13, 310–319 (2001).CrossRefGoogle Scholar
  20. 20.
    Weis, K. Regulating Access to the Genome: Nucleocytoplasmic Transport throughout the Cell Cycle. Cell 112, 441–451 (2003).CrossRefGoogle Scholar
  21. 21.
    Lusk, C. P., Blobel, G. & King, M. C. Highway to the inner nuclear membrane: rules for the road. Nature Reviews Mol Cell Biol 8, 414–420, doi:10.1038/nrm2165 (2007).CrossRefGoogle Scholar
  22. 22.
    Radu, A., Blobel, G. & Moore, M. Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci USA 92, 1769–1773 (1995).CrossRefGoogle Scholar
  23. 23.
    Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 6, 197–206 (2004).CrossRefGoogle Scholar
  24. 24.
    Dingwal, C. & Laskey, R. A. Nuclear targeting sequences—a consensus? Trend Biochem Sci 16, 478–481 (1991).CrossRefGoogle Scholar
  25. 25.
    Chen, Q. Q., Chen, X. Y., Jiang, Y. Y. & Liu, J. Identification of novel nuclear localization signal within the ErbB-2 protein. Cell Research 15, 504–510 (2005).CrossRefGoogle Scholar
  26. 26.
    Köhler, M. et al. Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. Mol Cell Biol 19, 7782–7791 (1999).CrossRefGoogle Scholar
  27. 27.
    Köhler, M. et al. Cloning of two novel human importin-K subunits and analys expression pattern of the importin-K protein family. FEBS Letters 417, 104–108 (1997).CrossRefGoogle Scholar
  28. 28.
    Tsuji, L., Takumi, T., Imamoto, N. & Yoneda, Y. Identification of novel homologues of mouse importin alpha, the alpha subunit of the nuclear pore-targeting complex, and their tissue-specific expression. FEBS Letters 416, 30–34 (1997).CrossRefGoogle Scholar
  29. 29.
    Kaffman, A. & O’Shea, E. K. Regulation of nuclear localization: a key to a door. Ann Rev Cell Dev Biol 15, 291–339 (1999).CrossRefGoogle Scholar
  30. 30.
    Madison, D. L., Yaciuk, P., Kwok, R. P. & Lundblad, J. R. Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem 277, 38755–38763.Google Scholar
  31. 31.
    Smith, W. A., Schurter, B. T., Wong-Staal, F. & David, M. Arginine methylation of RNA helicase a determines its subcellular localization. J Biol Chem 279, 22795–22798 (2004).CrossRefGoogle Scholar
  32. 32.
    Plafker, S. M., Plafker, K. S., Weissman, A. M. & Macara, I. G. Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import. J Cell Biol 167, 649–659 (2004).CrossRefGoogle Scholar
  33. 33.
    McLane, L. M. & Corbett, A. H. Nuclear Localization Signals and Human Disease. Iubmb Life 61, 697–706, doi:10.1002/iub.194 (2009).CrossRefGoogle Scholar
  34. 34.
    Hay, R. T. SUMO: A history of modification. Mol Cell 18, 1–12 (2005).CrossRefGoogle Scholar
  35. 35.
    Johnson, E. S. Protein modification by SUMO. Ann Rev Biochem 73, 355–382, doi:10.1146/73.011303.074118 (2004).CrossRefGoogle Scholar
  36. 36.
    Melchior, F. SUMO-Nonclassical ubiquitin. Ann Rev Cell Dev Biol 16, 591–598 (2000).CrossRefGoogle Scholar
  37. 37.
    Terui, Y., Saad, N., Jia, S., McKeon, F. & Yuan, J. Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem 279, 28257–28265 (2004).CrossRefGoogle Scholar
  38. 38.
    Salinas, S. et al. SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1. J Cell Biol 165, 767–773 (2004).CrossRefGoogle Scholar
  39. 39.
    Chen, A. et al. SUMO Regulates the Cytoplasmonuclear Transport of its Target Protein Daxx. J Cell Biochem 98, 895–911 (2006).CrossRefGoogle Scholar
  40. 40.
    Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8, 947–956, doi:10.1038/nrm2293 (2007).CrossRefGoogle Scholar
  41. 41.
    Seeler, J. S. & Dejean, A. Nuclear and unclear function of SUMO. Nat Rev Mol Cell Biol 4, 690–699 (2003).CrossRefGoogle Scholar
  42. 42.
    Martin, S., Wilkinson, K. A., Nishimune, A. & Henley, J. M. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8, 948–959, doi:10.1038/nrn2276 (2007).CrossRefGoogle Scholar
  43. 43.
    Geoffroy, M. C. & Hay, R. T. An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 10, 564–568, doi:10.1038/nrm2707 (2009).CrossRefGoogle Scholar
  44. 44.
    Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252–6258 (2000).CrossRefGoogle Scholar
  45. 45.
    Bonifaci, N., Moroianu, J., Radu, A. & Blobel, G. Karyopherin beta 2 mediates nuclear import of a mRNA binding protein. Proc Natl Acad Sci USA 94, 5055–5060 (1997).CrossRefGoogle Scholar
  46. 46.
    Moroianu, J. & Blobel, G. Protein export from the nucleus requires the GTPase Ran and GTP hydrolysis. Proc Natl Acad Sci USA 92, 4318–4322 (1995).CrossRefGoogle Scholar
  47. 47.
    Moroianu, J., Blobel, G. & Radu, A. RanGTP-mediated nuclear export of karyopherin alpha involves its interaction with the nucleoporin Nup153. Proc Natl Acad Sci USA 94, 9699–9704 (1997).CrossRefGoogle Scholar
  48. 48.
    Su, H. L. & Li, S. S. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296, 65–73 (2002).CrossRefGoogle Scholar
  49. 49.
    Valentin, G. et al. Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nature Methods 2, 801 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Comparative MedicineYale School of MedicineNew HavenUSA
  2. 2.Department of Foods and NutritionKookmin UniversitySeoulRepublic of Korea
  3. 3.Department of Bio and Fermentation Convergence Technology, Department of Integrative Biomedical Science and EngineeringKookmin UniversitySeoulRepublic of Korea

Personalised recommendations