Advertisement

Molecular & Cellular Toxicology

, Volume 15, Issue 1, pp 41–48 | Cite as

CMIT/MIT induce apoptosis and inflammation in alveolar epithelial cells through p38/JNK/ERK1/2 signaling pathway

  • Jooyeon Lee
  • Hanbyeol Lee
  • Soojin Jang
  • Seok-Ho Hong
  • Woo Jin Kim
  • Se Min Ryu
  • Sung-Min Park
  • Kyung-Hak Lee
  • Sung-Joon Cho
  • Se-Ran YangEmail author
Original Paper
  • 11 Downloads

Abstract

Backgrounds

The 5-chloro-2-methyl-2h-isothiazolin-3-one and 2-methyl-2h-isothiazol-3-one (CMIT/MIT) are widespread biocides that commonly found in variety of water-soluble consumer products including dentifrice, germicide and shampoo etc. Recently, in Korea, it has been reported that general population was exposed to humidifier sterilizer with CMIT/MIT as disinfectant components, and eventually more than 530 victims had been suffered severe lung disease since they had used. Although it is known to be a certain risk factor threatening public health, it is unknown to be associated with pathological cellular- and molecular-mechanisms. Therefore, in this study, we investigated the cytotoxic effect of CMIT/MIT in mouse alveolar type II epithelial cells, MLE-12 cells.

Methods

MLE-12 cells were treated with CMIT/MIT (0-50 μM) for 24 hours.

Results

In MTT assay, cellular proliferation was significantly decreased in response to CMIT/MIT treatment. In western blot analysis, protein levels of BAX/Bcl-2 and cleaved caspase-3 were significantly increased. Moreover, cell cycle-related gene were also increased. In ELISA, CMIT/MIT increased the release of pro-inflammatory cytokine of TNF-α and IL-1β. Moreover, CMIT/MIT increased the phosphorylated-ERK1/2, phosphorylated-p38, and phosphorylated-JNK1/2 protein levels in MLE-12 cells.

Conclusion

These findings suggest that CMIT/MIT exposure induce the injury of alveolar epithelial cells with inflammatory response via the p38-JNK1/2-ERK1/2 signaling pathway.

Keywords

CMIT/MIT Pulmonary toxicity Alveolar epithelial cells Apoptosis MAPK 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cho, H. J. et al. Effects of a mixture of chloromethylisothiazolinone and methylisothiazolinone on peripheral airway dysfunction in children. PLoS One 12, e0176083 (2017).CrossRefGoogle Scholar
  2. 2.
    Willliams, T. M. The mechanism of action of isothiazolone biosides. PPChem 9, 14–22 (2007).Google Scholar
  3. 3.
    Park, T. The humidifier disinfectant case and the legislative challenges of the 20th Congress. Environ Health Toxicol 31, e2016015 (2016).CrossRefGoogle Scholar
  4. 4.
    Jung, H. N., Zerin, T., Podder, B., Song, H. Y. & Kim, Y. S. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells. Toxicol In Vitro 28, 684–692 (2014).CrossRefGoogle Scholar
  5. 5.
    Park, D. U. et al. Types of household humidifier disinfectant and associated risk of lung injury (HDLI) in South Korea. Sci Total Environ 596-597, 53–60 (2017).CrossRefGoogle Scholar
  6. 6.
    Song, J. A. et al. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy. Food Chem Toxicol 69, 267–275 (2014).CrossRefGoogle Scholar
  7. 7.
    Pelletier, G., Valli, V. E., Rigden, M. & Poon, R. Effects of a 28-day oral exposure to a 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one biocide formulation in Sprague-Dawley rats. Drug Chem Toxicol 37, 149–155 (2014).CrossRefGoogle Scholar
  8. 8.
    Poon, R., Rigden, M., Edmonds, N., Charman, N. & Lamy, S. Effects of 5-chloro-2-methyl-4-isothiazolin-3-one and other candidate biodiesel biocides on rat alveolar macrophages and NR8383 cells. Arch Toxicol 85, 1419–1427 (2011).CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Kumar, V. S., Zhang, W., Rehman, J. & Malik, A. B. Activation of type II cells into regenerative stem cell antigen-1 (+) cells during alveolar repair. Am J Respir Cell Mol Biol 53, 113–124 (2015).CrossRefGoogle Scholar
  10. 10.
    Franco-Montoya, M. L. et al. Pulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 297, L965–976 (2009).CrossRefGoogle Scholar
  11. 11.
    Bai, Y. X., Fang, F., Jiang, J. L. & Xu, F. Extrinsic Calcitonin Gene-Related Peptide Inhibits Hyperoxia-Induced Alveolar Epithelial Type II Cells Apoptosis, Oxidative Stress, and Reactive Oxygen Species (ROS) Production by Enhancing Notch 1 and Homocysteine-Induced Endoplasmic Reticulum Protein (HERP) Expression. Med Sci Monit 23, 5774–5782 (2017).CrossRefGoogle Scholar
  12. 12.
    Tojo, K. et al. Enhancement of glycolysis by inhibition of oxygen-sensing prolyl hydroxylases protects alveolar epithelial cells from acute lung injury. FASEB J 32, 2258–2268 (2017).CrossRefGoogle Scholar
  13. 13.
    Frazier, W. J., Xue, J., Luce, W. A. & Liu, Y. MAPK signaling drives inflammation in LPS-stimulated cardiomyocytes: the route of crosstalk to G-protein-coupled receptors. PLoS One 7, e50071 (2012).CrossRefGoogle Scholar
  14. 14.
    Schettgen, T. & Kraus, T. Urinary excretion kinetics of the metabolite N-methylmalonamic acid (NMMA) after oral dosage of chloromethylisothiazolinone and methylisothiazolinone in human volunteers. Arch Toxicol 91, 3835–3841 (2017).CrossRefGoogle Scholar
  15. 15.
    Guimaraens, D., Conde-Salazar, L. & Gonzalez, M. A. Allergic contact dermatitis on the hands from chloromethylisothiazolinone in moist toilet paper. Contact Dermatitis 35, 254 (1996).CrossRefGoogle Scholar
  16. 16.
    Chung, L. Y. Oxidative stress in mouse skin following application of contact allergenic 5-chloro-2-methyl-4-isothiazolin-3-one and oxazolone. Contact Dermatitis 52, 170–171 (2005).CrossRefGoogle Scholar
  17. 17.
    Lee, H. et al. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FASEB J 31, 2076–2089 (2017).CrossRefGoogle Scholar
  18. 18.
    Jiang, C. et al. Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease. Aging Cell 16, 1114–1124 (2017).CrossRefGoogle Scholar
  19. 19.
    Burnham, E. L., Janssen, W. J., Riches, D. W., Moss, M. & Downey, G. P. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J 43, 276–285 (2014).CrossRefGoogle Scholar
  20. 20.
    Ok, S., Kang, J. S. & Kim, K. M. Cultivated wild ginseng extracts upregulate the anti-apoptosis systems in cells and mice induced by bisphenol A. Mol Cell Toxicol 13, 73–82 (2017).CrossRefGoogle Scholar
  21. 21.
    Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495–516 (2007).CrossRefGoogle Scholar
  22. 22.
    Sutherland, L. M., Edwards, Y. S. & Murray, A. W. Alveolar type II cell apoptosis. Comp Biochem Physiol A Mol Integr Physiol 129, 267–285 (2001).CrossRefGoogle Scholar
  23. 23.
    Teng, X. & Toyama, Y. Apoptotic force: active mechanical function of cell death during morphogenesis. Dev Growth Differ 53, 269–276 (2011).CrossRefGoogle Scholar
  24. 24.
    Martin, T. R., Hagimoto, N., Nakamura, M. & Matute-Bello, G. Apoptosis and epithelial injury in the lungs. Proc Am Thorac Soc 2, 214–220 (2005).CrossRefGoogle Scholar
  25. 25.
    Kamp, D. W. et al. Asbestos-induced alveolar epithelial cell apoptosis. The role of endoplasmic reticulum stress response. Am J Respir Cell Mol Biol 49, 892–901 (2013).Google Scholar
  26. 26.
    Fink, S. L. & Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73, 1907–1916 (2005).CrossRefGoogle Scholar
  27. 27.
    Martinou, J. C. & Youle, R. J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21, 92–101 (2011).CrossRefGoogle Scholar
  28. 28.
    Vosler, P. S., Graham, S. H., Wechsler, L. R. & Chen, J. Mitochondrial targets for stroke: focusing basic science research toward development of clinically translatable therapeutics. Stroke 40, 3149–3155 (2009).CrossRefGoogle Scholar
  29. 29.
    Ooi, H. K. & Ma, L. Modeling heterogeneous responsiveness of intrinsic apoptosis pathway. BMC Syst Biol 7, 65 (2013).CrossRefGoogle Scholar
  30. 30.
    Delbridge, A. R. & Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 22, 1071–1080 (2015).CrossRefGoogle Scholar
  31. 31.
    Lee, Y. J. & Lee, S. H. Sulforaphane potentiates growth-inhibiting and apoptosispromoting activities of cisplatin following oxidative stress and mitochondrial dysfunction in malignant mesothelioma cells. Mol Cell Toxicol 12, 289–299 (2016).CrossRefGoogle Scholar
  32. 32.
    Mason, R. J. Biology of alveolar type II cells. Respirology 11 Suppl, S12–15 (2006).CrossRefGoogle Scholar
  33. 33.
    Desai, T. J., Brownfield, D. G. & Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).CrossRefGoogle Scholar
  34. 34.
    Li, X., Shu, R., Filippatos, G. & Uhal, B. D. Apoptosis in lung injury and remodeling. J Appl Physiol (1985) 97, 1535–1542 (2004).CrossRefGoogle Scholar
  35. 35.
    Kim, E. M. et al. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer Res 77, 3092–3100 (2017).CrossRefGoogle Scholar
  36. 36.
    Poreba, M., Strozyk, A., Salvesen, G. S. & Drag, M. Caspase substrates and inhibitors. Cold Spring Harb Perspect Biol 5, a008680 (2013).CrossRefGoogle Scholar
  37. 37.
    Wada, T. & Penninger, J. M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838–2849 (2004).CrossRefGoogle Scholar
  38. 38.
    Wang, L., Du, F. & Wang, X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).CrossRefGoogle Scholar
  39. 39.
    Raupach, B., Peuschel, S. K., Monack, D. M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect Immun 74, 4922–4926 (2006).CrossRefGoogle Scholar
  40. 40.
    McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5, a008656 (2013).CrossRefGoogle Scholar
  41. 41.
    Kim, E. K. & Choi, E. J. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802, 396–405 (2010).CrossRefGoogle Scholar
  42. 42.
    Kil, K. H., Kim, M. R., Kim, J. H., Jung, Y. J. & Cho, H. H. Analysis of ovarian gene expression in F2 mouse following perinatal exposure to DEHP via the parenteral route. Mol Cell Toxicol 12, 421–427 (2016).CrossRefGoogle Scholar
  43. 43.
    Samara, K. D. et al. Upregulation of citrullination pathway: From Autoimmune to Idiopathic Lung Fibrosis. Respir Res 18, 218 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  • Jooyeon Lee
    • 1
  • Hanbyeol Lee
    • 1
  • Soojin Jang
    • 1
  • Seok-Ho Hong
    • 2
  • Woo Jin Kim
    • 2
  • Se Min Ryu
    • 1
  • Sung-Min Park
    • 1
  • Kyung-Hak Lee
    • 1
  • Sung-Joon Cho
    • 1
  • Se-Ran Yang
    • 1
    Email author
  1. 1.Department of Thoracic and Cardiovascular Surgery, School of MedicineKangwon National UniversityChuncheon, GangwonRepublic of Korea
  2. 2.Department of Internal Medicine, School of MedicineKangwon National UniversityChuncheon, GangwonRepublic of Korea

Personalised recommendations