Molecular & Cellular Toxicology

, Volume 13, Issue 3, pp 327–336 | Cite as

Cadmium-induced biomarkers discovery and comparative network analysis in Daphnia magna

  • Jun Hyuek Yang
  • Hyo Jeong Kim
  • Sang Min Lee
  • Bo-Mi Kim
  • Young Rok Seo
Original Paper


Exposure to cadmium is gradually increased and its toxicity can be fatal to organisms in aquatic environment. D. magna inhabits in water. It is recommended by OECD guideline to test toxicity of chemicals. Through acute immobilization test, we observed a mobility change of D. magna caused by cadmium chloride exposure. The EC50 value of cadmium chloride was 14.5 ppb. Using D. magna in EC50 value of cadmium, we conducted microarray analysis to investigate differential gene expression and found 247 up- and 146 down-regulated genes. We performed BLAST analysis to identify and understand the meaning of the microarray data in comparative genomics. Comparing common proteins in some species, potential biomarkers and functions are discovered through pathway analysis. Based on differential gene expression of cadmium-treated D. magna, potential biomarkers are identified and investigated by functional network of mammals including human through comparative genomic analysis.

Key words

Daphnia magna Cadmium Microarray BLAST Comparative genomic study Biomarker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13273_2017_36_MOESM1_ESM.pdf (610 kb)
Cadmium-induced biomarkers discovery and comparative network analysis in Daphnia magna


  1. 1.
    IPCS (International Programme on Chemical Safety), WHO (World Health Organization), Cadmium-Environmental aspects, Environmental Health Criteria. 135, (1992).Google Scholar
  2. 2.
    Official Journal of the European Union, Directive 2011/65/Eu of the European Parliament and of the Council of 8 June 2011, Scholar
  3. 3.
    United Nations Environment Programme, Chemicals Branch, DTIE, Final review of scientific information on cadmium, (2010).Google Scholar
  4. 4.
    OECD (The Organisation for Economic Co-operation and Development), OECD Guidelines for the Testing of Chemicals, Scholar
  5. 5.
    Baumann, J., Köser, J., Arndt, D. & Filser, J. The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna. Sci Total Environ 484:176–184 (2014).CrossRefPubMedGoogle Scholar
  6. 6.
    Qi, S. et al. Toxicity assessments with Daphnia magna of Guadipyr, a new neonicotinoid insecticide and studies of its effect on acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (CAT) and chitobiase activities. Ecotoxicol Environ Saf 98:339–344 (2013).CrossRefPubMedGoogle Scholar
  7. 7.
    Cupi, D., Hartmann, N. B. & Baun, A. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Environ Toxicol Chem 34:497–506 (2015).CrossRefPubMedGoogle Scholar
  8. 8.
    Hu, A. M., Zhu, T., Dong, L., Luo, N. F. & Du, G. Z. Ethanol alters the expression of ion channel genes in Daphnia pulex. Am J Drug Alcohol Abuse 42:325–332 (2016).CrossRefPubMedGoogle Scholar
  9. 9.
    ADW9 (Animal Diversity Web), Daphnia pulex, Scholar
  10. 10.
    John, P. C. in Daphnia: An Aquarist’s Guide, Version 3.2, (2002).Google Scholar
  11. 11.
    Victor, A. & Winfried, L. Maternal control of restingegg production in Daphnia. Nature 414:899–901 (2001).CrossRefGoogle Scholar
  12. 12.
    Poirier, D. G., Westlake, G. F. & Abernethy, S. G. in Daphnia magna acute lethality toxicity test protocol (Ontario Ministry of the Environment Toronto, Ontario, Canada, 1988).Google Scholar
  13. 13.
    OECD (The Organisation for Economic Co-operation and Development), OECD Guideline for Testing of Chemicals, Test No. 202: Daphnia sp. Acute Immobilisation Test (2004).Google Scholar
  14. 14.
    Cui, F., Chai, T., Liu, X. & Wang, C. Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin and trifloxystrobin) on Daphnia magna. Environ Toxicol Chem 36:182–189 (2016).CrossRefPubMedGoogle Scholar
  15. 15.
    Cupi, D., Hartmann, N. B. & Baun, A. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicol Environ Saf 127:144–152 (2016).CrossRefPubMedGoogle Scholar
  16. 16.
    EMEDSA, Advanced pharmacology concepts, cology.htmlGoogle Scholar
  17. 17.
    Sjöström, M., Kolman, A., Clemedson, C. & Clothier, R. Estimation of human blood LC50 values for use in modeling of in vitro-in vivo data of the ACuteTox project. Toxicol In Vitro 22:1405–1411 (2008).CrossRefPubMedGoogle Scholar
  18. 18.
    Adam, N., Vergauwen, L., Blust, R. & Knapen, D. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. Environ Res 138:82–92 (2015).CrossRefPubMedGoogle Scholar
  19. 19.
    Toyota, K. et al. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna. J Appl Toxicol 34:537–544 (2014).CrossRefPubMedGoogle Scholar
  20. 20.
    NIH (U.S. National Library of Medicine), NCBI (National Center for Biotechnology information), BLAST (Basic Local Alignment Search Tool), Scholar
  21. 21.
    ICdA (International Cadmium Association), Cadmium Pigments, tions/cadmium-pigmentsGoogle Scholar
  22. 22.
    Krishnamurti, G. S. R. et al. Biogeochemistry of Soil Cadmium and the Impact on Terrestrial Food Chain Contamination. Biogeochemistry of Trace Elements in the Rhizosphere, pp. 197–257 (2005).CrossRefGoogle Scholar
  23. 23.
    Connon, R. et al. Linking molecular and population stress responses in Daphnia magna exposed to cadmium. Environ Sci Technol 42:2181–2188 (2008).CrossRefPubMedGoogle Scholar
  24. 24.
    Tan, Q. G. & Wang, W. X. Acute toxicity of cadmium in Daphnia magna under different calcium and pH conditions: importance of influx rate. Environ Sci Technol 45:1970–1976 (2011).CrossRefPubMedGoogle Scholar
  25. 25.
    Richard, M. Biomarkers: Potential Uses and Limitations. NeuroRx 1:182–188 (2004).CrossRefGoogle Scholar
  26. 26.
    Daniel, S. Necessity of Defining Biomarkers for Use in Ecological Risk Assessments. Mar Pollut Bull 39:48–53 (1999).CrossRefGoogle Scholar
  27. 27.
    NCBI (National Center for Biotechnology Information), Molecular Biology Review, Central Dogma of Biology: Classic View, Scholar
  28. 28.
    Tina, L. T. & Allan, C. S. Drosophila Pxt: a cyclooxygenase-like facilitator of follicle maturation. Development 135:839 (2008).CrossRefGoogle Scholar
  29. 29.
    Vazquez, M., Rodriguez, R. & Zurita, M. A new peroxinectin-like gene preferentially expressed during oogenesis and early embryogenesis in Drosophila melanogaster. Dev Genes Evol 212:526–529 (2002).CrossRefPubMedGoogle Scholar
  30. 30.
    Qian, H., Guoyu, L. & Jianyong, L. Purification and Characterization of Chorion Peroxidase from Aedes aegypti Eggs. Arch Biochem Biophys 378:107–115 (2000).CrossRefGoogle Scholar
  31. 31.
    Guillemette, C. Pharmacogenomics of human UDPglucuronosyltransferase enzymes. Pharmacogenomics J 3:136–158 (2003).CrossRefPubMedGoogle Scholar
  32. 32.
    Tan, T. M., Wong, K. P. & Sit, K. H. Expression of a high-affinity form of UDP-glucuronosyltransferase in human foetal liver cells in culture on exposure to mercuric chloride. Biochem J 278:99–103 (1991).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ouzzine, M. et al. Expression of the human UDP-glucuronosyltransferase UGT1*6 in Escherichia coli. Influence of bacterial signal peptides on the production and localization of the recombinant protein. FEBS Lett 339:195–199 (1994).CrossRefPubMedGoogle Scholar
  34. 34.
    Korének, M. et al. Effects of cadmium and zinc on the activity of chymotrypsin and trypsin in droppings of Japanese quails. Int J Environ Stud 64:2 (2007).CrossRefGoogle Scholar
  35. 35.
    Min, S. et al. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Sci Rep 6:19405 (2016).CrossRefGoogle Scholar
  36. 36.
    Angeli, S. et al. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–754 (1999).CrossRefPubMedGoogle Scholar
  37. 37.
    Yang, L. et al. Candidate Olfaction Genes Identified within the Helicoverpa armigera Antennal Transcriptome. PLoS One 7:e48260 (2012).CrossRefGoogle Scholar
  38. 38.
    Kitabayashi, A. N., Arai, T., Kubo, T. & Natori, S. Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochem Mol Biol 28:785–790 (1987).CrossRefGoogle Scholar
  39. 39.
    Nancy, D. D., Marjorie, C. C., Kevin, J. K. & Linda, G. Vitellogenin as a Biomarker of Exposure for Estrogen or Estrogen Mimics. Ecotoxicology 8:385–398 (1999).CrossRefGoogle Scholar
  40. 40.
    Tohru, F. & Masuko, U. F. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid Redox Signal 15:1583–1606 (2011).CrossRefGoogle Scholar
  41. 41.
    Su, C. et al. Characterization and Processing of Superoxide Dismutase-Fused Vitellogenin in the Diapause Embryo Formation: A Special Developmental Pathway in the Brine Shrimp, Artemia parthenogenetica. Biol Reprod 85:31–41 (2011).Google Scholar
  42. 42.
    Pereira, R. et al. Effect of Cadmium Accumulation on Serum Vitellogenin Levels and Hepatosomatic and Gonadosomatic Indices of Winter Flounder (Pleuronectes americanus) Arch. Environ Contam Toxicol 24:427–431 (1993).CrossRefGoogle Scholar
  43. 43.
    Tokishita, S. et al. Organization and repression by juvenile hormone of a vitellogenin gene cluster in the crustacean, Daphnia magna. Biochem Biophys Res Commun 345:362–370 (2006).CrossRefPubMedGoogle Scholar
  44. 44.
    Kim, H. J., Preeyaporn, K. & Seo, Y. R. Ecotoxicogenomic Approaches for Understanding Molecular Mechanisms of Environmental Chemical Toxicity Using Aquatic Invertebrate, Daphnia Model Organism. Int J Mol Sci 16:12261–12287 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hwang, U. G., Kagawa, N. & Mugiya, Y. Aluminium and Cadmium Inhibit Vitellogenin and Its mRNA Induction by Estradiol-17 b in the Primary Culture of Hepatocytes in the Rainbow Trout Oncorhynchus mykiss. Gen Comp Endocrinol 119:69–76 (2000).CrossRefPubMedGoogle Scholar
  46. 46.
    Hiromichi, N. The crustacean cuticle: Structure, composition and mineralization. Front Biosci (Elite Ed) 4:711–720 (2012).Google Scholar
  47. 47.
    Andersen, S. O., Hjrup, P. & Roepstorff, P. Insect cuticular proteins. Insect Biochem Mol Biol 25:153–176 (1995).CrossRefPubMedGoogle Scholar
  48. 48.
    Soetaert, A. et al. Molecular impact of propiconazole on Daphnia magna using a reproduction-related cDNA array. Comp Biochem Physiol C Toxicol Pharmacol 142:66–76 (2006).CrossRefPubMedGoogle Scholar
  49. 49.
    Cvekl, A. & Callaerts, P. PAX6: 25th anniversary and more to learn. Exp Eye Res pii:S0014–4835 (2016).Google Scholar
  50. 50.
    Singhal, R. K., Anderson, M. E. & Meister, A. Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223 (1987).PubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jun Hyuek Yang
    • 1
  • Hyo Jeong Kim
    • 1
  • Sang Min Lee
    • 1
  • Bo-Mi Kim
    • 2
  • Young Rok Seo
    • 1
  1. 1.Institute of Environmental Medicine for Green Chemistry, Department of Life ScienceDongguk University Biomedical CampusGyeonggi-doRepublic of Korea
  2. 2.Unit of Polar GenomicsKorea Polar Research InstituteIncheonRepublic of Korea

Personalised recommendations