Advertisement

Molecular & Cellular Toxicology

, Volume 12, Issue 2, pp 149–158 | Cite as

Testicular antioxidant mechanism of cultivated wild ginseng extracts

Original Paper

Abstract

Recent studies have reported the relationship between reduced sperm counts and male infertility. The effects of cultivated wild ginseng extracts, which include ginsenosides, on cellular antioxidant activities were studied in testicular cells and animal models. In a study of rats, the weight of testis-right (15.38%, P<0.05) and testis-left (16.98%, P<0.05) in group D (cultivated wild ginseng extracts with bisphenol A) increased in comparison with group A (only bisphenol A). Reactive oxygen species of TM3 Leydig and TM4 Sertoli cells treated with bisphenol A significantly increased, by 36-41%, compared to the controls. Cultivated wild ginseng extracts at 10 and 25 μg/mL significantly increased the expression of catalase in TM3 cells, and catalase, superoxide dismutase 1, and glutathione peroxidase enzymes in TM4 cells. The induction of expression of catalase and superoxide dismutase 1 by cultivated wild ginseng extracts in rats occurs via the ERK and p38 pathways. Cultivated wild ginseng extracts also ameliorated the histopathological changes induced by bisphenol A in the testis.

Keywords

Cultivated wild ginseng extract Antioxidant Bisphenol A Testicular toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Šutiaková, I., Kovalkovicová, N., Tulenková, M. & Šutiak, V. Bisphenol A and its potential toxic effects on living organisms. J Microb Biotechnol Food Sci 2:526–535 (2012).Google Scholar
  2. 2.
    Guzick, D. S. et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 345:1388–1393 (2001).CrossRefPubMedGoogle Scholar
  3. 3.
    Irvine, D. S. Epidemiology and aetiology of male infertility. Hum Reprod 13:33–44 (1998).CrossRefPubMedGoogle Scholar
  4. 4.
    Paasch, U. et al. Semen quality in sub-fertile range for a significant proportion of young men from the general German population: a co-ordinated, controlled study of 791 men from Hamburg and Leipzig. Int J Androl 31:93–102 (2008).CrossRefPubMedGoogle Scholar
  5. 5.
    Carlsen, E, Giwercman, A., Keiding, N & Skakkebaek, N. E. Evidence for decreasing quality of semen during past 50 years. Br Med J 305:609–613 (1992).CrossRefGoogle Scholar
  6. 6.
    Iwasaki, A. & Gagnon, C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril 57:409–416 (1992).CrossRefPubMedGoogle Scholar
  7. 7.
    Saleh, R. A. & Agarwal, A. Oxidative stress and male infertility: From research bench to clinical practice. J Androl 23:737–752 (2002).PubMedGoogle Scholar
  8. 8.
    Bahrke, M. S. & Morgan, W. R. Evaluation of the ergogenic properties of ginseng: an update. Sports Med 29:113–133 (2000).CrossRefPubMedGoogle Scholar
  9. 9.
    Coleman, C. I., Hebert, J. H. & Reddy, P. The effects of Panax ginseng on quality of life. J Clin Pharm Ther 28:5–15 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    Xiang, Y. Z., Shang, H. C., Gao, X. M. & Zhang, B. L. A comparison of the ancient use of ginseng in traditional chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 22:851–858 (2008).CrossRefPubMedGoogle Scholar
  11. 11.
    Lim, W., Mudge, K. W. & Vermeylen, F. Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 53:8498–8505 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    Gillis, C. N. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 54:1–8 (1997).Google Scholar
  13. 13.
    Kim, S. J. et al. Preliminary report on the safety of a new herbal formula and its effect on sperm quality. World J Mens Health 31:254–261 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang, L. et al. Protective effects of ginsenosides against Bisphenol A-induced cytotoxicity in 15P-1 Sertoli cells via extracellular signal-regulated kinase 1/2 signalling and antioxidant mechanisms. Basic Clin Pharmacol Toxicol 111:42–49 (2012).PubMedGoogle Scholar
  15. 15.
    Turrens, J. F. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8 (1997).CrossRefPubMedGoogle Scholar
  16. 16.
    Spelman, K. et al. Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern Med Rev 11:128–150 (2006).PubMedGoogle Scholar
  17. 17.
    Atkinson, A. & Roy, D. In vitro conversion of environmental estrogenic chemical bisphenol A to DNA binding metabolite(s). Biochem Biophys Res Commun 210:424–433 (1995).CrossRefPubMedGoogle Scholar
  18. 18.
    Chitra, K. C., Latchoumycandane, C. & Mathur, P. P. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology 185:119–127 (2003).CrossRefPubMedGoogle Scholar
  19. 19.
    Sajiki, J. Decomposition of bisphenol-A (BPA) by radical oxygen. Environ Int 27:315–320 (2001).CrossRefPubMedGoogle Scholar
  20. 20.
    Tarafder, P., Sarkar, K., Nath, P. & Paul, G. Inhibition of heart ventricular function of rat by bisphenol A through oxidative stress induced injury of ventricular tissue. Int J Pharm Biol Sci 4:811–820 (2013).Google Scholar
  21. 21.
    Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18 (2002).CrossRefPubMedGoogle Scholar
  22. 22.
    Izumi, Y. et al. Molecular changes induced by bisphenol-A in rat Sertoli cell culture. Syst Biol Reprod Med 57:228–232 (2011).CrossRefPubMedGoogle Scholar
  23. 23.
    Aboul Ezz, H. S., Khadrawy, Y. A. & Mourad, I. M. The effect of bisphenol A on some oxidative stress parameters and acetylcholinesterase activity in the heart of male albino rats. Cytotechnology 67:145–155 (2015).CrossRefPubMedGoogle Scholar
  24. 24.
    Takahashi, O. & Oishi, S. Testicular toxicity of dietary 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) in F344 rats. Arch Toxicol 75:42–51 (2001).CrossRefPubMedGoogle Scholar
  25. 25.
    Kim, K. M., Seo, J. L. & Kang, J. S. Decursin and decursinol angelate affect spermatogenesis in the adult rat at oral administration. Mol Cell Toxicol 10:83–89 (2014).CrossRefGoogle Scholar
  26. 26.
    Takahashi, O. & Oishi, S. Testicular toxicity of dietary or parenterally administered bisphenol A in rats and mice. Food Chem Toxicol 41:1035–1044 (2003).CrossRefPubMedGoogle Scholar
  27. 27.
    Son, C. Y. et al. Pharmacological effect of decursin and decursinol angelate from Angelica gigas Nakai. J Kor Pharm Sci 53:303–313 (2009).Google Scholar
  28. 28.
    Ok, S., Kang, J. S. & Kim, K. M. Simultaneous analysis method for polar and non-polar ginsenosides in cultivated wild ginseng by reversed-phase HPLC-CAD. J Life Sci 26:247–252 (2016).CrossRefGoogle Scholar
  29. 29.
    Rahman, M. S. et al. Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci Rep 16:9169 (2015).CrossRefGoogle Scholar
  30. 30.
    EPA (U.S. Environmental Protection Agency), Bisphenol A, CASRN 80-05-7, IRIS, Integrated Risk Information System, on-line. Available on the Internet at http://www.epa.gov/iris/ (1993).Google Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of pharmacy and Brain Busan 21 ProgramKyungsung UniversityBusanKorea

Personalised recommendations