Skip to main content
Log in

Protective effect of a novel herbmedicine, Hepad, on apoptosis of SH-SY5Y cells and a rat model of Parkinson’s disease

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra pars compacta. In this study, we investigated the effects of a novel herb formula, Hepad, on PD. Dose-dependent treatment with 1-methyl-4-phenylpyridinium (MPP+) decreased the viability of SH-SY5Y cells, and Hepad inhibited the toxic effect of MPP+. Hepad blocked the production of reactive oxygen species (ROS) induced by MPP+ in SH-SY5Y cells, and suppressed the activation of caspase 9 and caspase 3 due to MPP+. A rat model of PD was generated by 6-hydroxydopamine (6-OHDA) injection into the left medial forebrain bundle (MFB) of SD rats. In D-amphetamine sulfate-induced rotational behavioral tests, Hepad administration attenuated circling behavior relative to the 6-OHDA-treated disease group. In addition, Hepad treatment significantly increased the tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta (SNpc) that had decreased in response to 6-OHDA treatment (P<0.05). OX-6 expression, which indicates the presence of microglial cells, decreased significantly after treatment of Hepad in contrast to the 6-OHDA-treated disease group (P<0.05). These results indicate that Hepad may be a useful neuroprotective material for the treatment of neurodegenerative disorders such as PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Lau, L. M. and Breteler, M. M. Epidemiology of Par-kinson’s disease. Lancet Neurol 5:525–535 (2006).

    Article  PubMed  Google Scholar 

  2. Zhao, Y. et al. GDNF-transfected macrophages pro-duce potent neuroprotective effects in Parkinson’s dis-ease mouse model. PLoS One 9:e106867 (2014).

  3. Owen, A. D., Schapira, A. H., Jenner, P. & Marsden, C. D. Oxidative stress and Parkinson’s disease. Ann N Y Acad Sci 15:217–223 (1996).

    Article  Google Scholar 

  4. Kidd, P. M. Parkinson’s disease as multifactorial oxi-dative neurodegeneration: implications for integrative management. Altern Med Rev 5:502–529 (2000).

    CAS  PubMed  Google Scholar 

  5. Jain, S., Wood, N. W. & Healy, D. G. Molecular genetic pathways in Parkinson’s disease: a review. Clin Sci (Lond) 109:355–364 (2005).

    Article  CAS  Google Scholar 

  6. Nicotra, A. & Parvez, S. Apoptotic molecules and MPTP-induced cell death. Neurotoxicol Teratol 24:599–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Alberio, T., Lopiano, L. & Fasano, M. Cellular models to investigate biochemical pathways in Parkinson’s disease. FEBS J 279:1146–1155 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Blandini, F. & Armentero, M. T. Animal models of par-kinson’s disease. FEBS J 279:1156–1166 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Chotibut, T., Apple, D. M., Jefferis, R. & Salvatore, M. F. Dopamine transporter loss in 6-OHDA Parkinson’s model is unmet by parallel reduction in dopamine up-take. PLoS One 7:e52322 (2012).

  10. Connolly, B. S. & Lang, A. E. Pharmacological treat-ment of Parkinson disease: a review. JAMA 311:1670–1683 (2014).

    Article  PubMed  Google Scholar 

  11. Shulman, L. M., Taback, R. L., Bean, J. & Weiner, W. J. Comorbidity of the nonmotor symptoms of Parkinson’s disease. Mov Disord 16:507–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Li, X. Z., Zhang, S. N., Liu, S. M. & Lu, F. Recent ad-vances in herbal medicines treating Parkinson’s disease. Fitoterapia 84:273–285 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Adams, J. D., Klaidman, L. K. & Leung, A. C. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radic Biol Med 15:181–186 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, B. et al. Protective effects of methanol extract of Acori graminei rhizoma and Uncariae Ramulus et Un-cus on ischemia-induced neuronal death and cognitive impairments in the rat. Life Sci 74:435–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, J. H. et al. Effects of methanol extract of Uncari-ae Ramulus et Uncus on ibotenic acid-induced amnesia in the rat. J Pharmacol Sci 96:314–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hiratsuka, T. et al. Yokukansan inhibits neuronal death during ER stress by regulating the unfolded protein re-sponse. PLoS One 5:e13280 (2010).

  17. Hirsch, E. C. & Hunot, S. Neuroinflammation in Par-kinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Hirsch, E. C., Vyas, S. & Hunot, S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18 Suppl 1:S210-S212 (2012).

  19. Kim, J., Park, C. S., Lim, Y. & Kim, H. S. Paeonia ja-ponica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages. J Med Food 12:365–373 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, G. et al. Er-Miao-San, a traditional herbal for-mula containing Rhizoma Atractylodis and Cortex Phel-lodendri inhibits inflammatory mediators in LPS-stim-ulated RAW264.7 macrophages through inhibition of NF-kB pathway and MAPKs activation. J Ethnophar-macol 154:711–718 (2014).

    Article  Google Scholar 

  21. Jeong, J. W. et al. Ethanol extract of Poria cocos redu-ces the production of inflammatory mediators by sup-pressing the NF-kappaB signaling pathway in lipopoly-saccharide-stimulated RAW 264.7 macrophages. BMC Complement Altern Med 14:101 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lu, Y. T., Kuan, Y. C., Chang, H. H. & Sheu, F. Molec-ular cloning of a Poria cocos protein that activates Th1 immune response and allays Th2 cytokine and IgE pro-duction in a murine atopic dermatitis model. J Agric Food Chem 62:2861–2871 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Dauer, W. & Przedborski, S. Parkinson’s disease: mech anisms and models. Neuron 39:889–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, S. W., Ko, H. S., Dawson, V. L. & Dawson, T. M. Recent advances in our understanding of Parkinson’s disease. Drug Discovery Today: Disease Mechanisms 2: 427–433 (2005).

    Article  Google Scholar 

  25. Zhang, Z. G. et al. Astragaloside IV prevents MPP+-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol Cell Biochem 364: 209–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Tseng, Y. T., Chang, F. R. & Lo, Y. C. The Chinese herbal formula Liuwei dihuang protects dopaminergic neurons against Parkinson’s toxin through enhancing antioxidative defense and preventing apoptotic death. Phytomedicine 21:724–733 (2014).

    Article  PubMed  Google Scholar 

  27. Doo, A. R. et al. Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cyto-toxicity in vitro and in vivo. J Ethnopharmacol 131: 433–442 (2010).

    Article  PubMed  Google Scholar 

  28. Bae, N. et al. The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in mod-els of Parkinson’s disease. J Ethnopharmacol 134:313–322 (2011)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung-Jun Park or In Sik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, S.Y., Lee, N.R., Kim, D.H. et al. Protective effect of a novel herbmedicine, Hepad, on apoptosis of SH-SY5Y cells and a rat model of Parkinson’s disease. Mol. Cell. Toxicol. 11, 223–230 (2015). https://doi.org/10.1007/s13273-015-0021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0021-7

Keywords

Navigation