Advertisement

Molecular & Cellular Toxicology

, Volume 11, Issue 1, pp 19–28 | Cite as

MicroRNA expression profiling of p-phenylenediamine treatment in human keratinocyte cell line

  • Hwa Jun Cha
  • Ok-Kyu Lee
  • Soo Yeon Kim
  • Jung-Min Ko
  • Su Young Kim
  • Ji Hye Son
  • Hyun Joo Han
  • Shunhua Li
  • Soo Young Kim
  • Kyu Joong Ahn
  • In-Sook An
  • Sungkwan An
  • Seunghee BaeEmail author
Original Paper

Abstract

p-Phenylenediamine (PPD), a black dye used in hair coloring and tattoos, irritates the skin, leading to cell cycle arrest, apoptosis, and reactive oxygen species (ROS) generation. MicroRNAs (miRNAs) are well known regulators of these side effects. The aim of the present study was to evaluate PPD-induced miRNA expression profile alterations in human keratinocytes. First, we demonstrated that PPD reduced HaCaT cell viability by inducing cell cycle arrest and death, elevating cellular ROS levels and decreasing the migration rate. In addition, 67 miRNAs were upregulated by at least 5-fold in PPD-treated HaCaT cell and 17 miRNAs were downregulated by at least 5- fold in PPD-treated HaCaT cell. Using bioinformatics, we identified a relationship between PPD-mediated miRNA changes and cell death, cell cycle arrest, generation of ROS, and migration repression. Target genes of PPD-regulated miRNAs were involved in cell proliferation, apoptosis, skin development, and aging. Thus, our results establish a role for miRNAs in regulating PPD-induced cell death, cell cycle arrest, ROS generation, and repression of migration in human keratinocytes.

Keywords

p-Phenylenediamine Human keratinocytes microRNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lawrence, N. S., Beckett, E. L., Davis, J. & Comptonm, R.G. Voltammetric investigation of hair dye constituents: application to the quantification of p-phenylenediamine. Analyst 126:1897–900 (2001).CrossRefPubMedGoogle Scholar
  2. 2.
    Corbett, J. F. An historical review of the use of dye precursors in the formulation of commercial oxidation hair dyes. Dyes Pigments 41:127–136 (1999).CrossRefGoogle Scholar
  3. 3.
    Brown, K. C. in Hair and Hair Care (eds Johnson, D.) 191–215 (Marcel Dekker, New York, 1997).Google Scholar
  4. 4.
    Gendler, E. Adverse reaction to cosmetics. Cutis 39: 525–526 (1987).PubMedGoogle Scholar
  5. 5.
    Moeller, R., Lichter, J. & Blömeke, B. Impact of paraphenylenediamine on cyclooxygenases expression and prostaglandin formation in human immortalized keratinocytes (HaCaT). Toxicology 249:167–175 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    Eilstein, J., Giménez-Arnau, E., Duché, D., Rousset, F. & Lepoittevin, J. P. Mechanistic studies on the lysine-induced N-formylation of 2,5-dimethyl-p-benzoquinonediimine. Chem Res Toxicol 20:1155–1161 (2007).CrossRefPubMedGoogle Scholar
  7. 7.
    McFadden, J. P., Yeo, L. & White, J. L. Clinical and experimental aspects of allergic contact dermatitis to para-phenylenediamine. Clin Dermatol 29:316–324 (2011).CrossRefPubMedGoogle Scholar
  8. 8.
    So, J. Y., Shin, C. Y., Song, M., Rha, Y. A. & Ryu, J. C. Gene expression profiling of hair-dying agent, paraphenylenediamine, in human keratinocytes (HaCaT) cells. Mol Cell Toxicol 7:339–346 (2011).CrossRefGoogle Scholar
  9. 9.
    Moeller, R., Lichter, J. & Blömeke, B. Impact of paraphenylenediamine on cyclooxygenases expression and prostaglandin formation in human immortalized keratinocytes (HaCaT). Toxicology 249:167–175 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    Chung, K. T. et al. Mutagenicity and toxicity studies of p-phenylenediamine and its derivatives. Toxicol Lett 81:23–32 (1995).CrossRefPubMedGoogle Scholar
  11. 11.
    Chye, S. M. et al. Apoptosis induced by para-phenylenediamine involves formation of ROS and activation of p38 and JNK in chang liver cells. Environ Toxicol 29:981–990 (2014).CrossRefPubMedGoogle Scholar
  12. 12.
    Sontheimer, E. J. & Carthew, R. W. Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12 (2005).CrossRefPubMedGoogle Scholar
  13. 13.
    Hooff, G. P. et al. Analytical Investigations of Toxic p-Phenylenediamine (PPD) Levels in Clinical Urine Samples with Special Focus on MALDI-MS/MS. PLoS One 6:e22191 (2011).CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Tsutsumi, S. et al. Gastric irritant-induced apoptosis in guinea pig gastric mucosal cells in primary culture. Biochim Biophys Acta 1589:168–180 (2002).CrossRefPubMedGoogle Scholar
  15. 15.
    Nakai, K., Yoneda, K. & Kubota, Y. Oxidative stress in allergic and irritant dermatitis: from basic research to clinical management. Recent Pat Inflamm Allergy Drug Discov 6:202–209 (2012).CrossRefPubMedGoogle Scholar
  16. 16.
    Jovanovic, M. & Hengartner, M. O. miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187, (2006).CrossRefPubMedGoogle Scholar
  17. 17.
    Bueno, M. J. & Malumbres, M. MicroRNAs and the cell cycle. Biochim Biophys Acta 1812: 592–601 (2011).CrossRefPubMedGoogle Scholar
  18. 18.
    Xu, S. et al. Oxidative stress mediated-alterations of the microRNA expression profile in mouse hippocampal neurons. Int J Mol Sci 13:16945–16960 (2012).CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Cui, L. et al. MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer 12:546 (2012).CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Liu, Q. et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36:5391–5404 (2008).CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949 (2005).CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Zhang, X. et al. MicroRNA-21 modulates the levels of reactive oxygen species levels by targeting SOD3 and TNFa. Cancer Res 72:4707–4713 (2012).CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    An, Y. R. & Hwang, S. Y. Toxicology study with microRNA. Mol Cell Toxicol 10:127–134 (2014).CrossRefGoogle Scholar
  24. 24.
    Lema, C. & Cunningham, M. J. MicroRNAs and their implications in toxicological research. Toxicol Lett 5:100–105 (2010).CrossRefGoogle Scholar
  25. 25.
    Chen, S. C. et al. p-Phenylenediamine induces p.53- mediated apoptosis in Mardin Darby canine Kidney cells. Toxicol In Vitro 20:801–807 (2006).CrossRefPubMedGoogle Scholar
  26. 26.
    Chen, S. C. et al. Para-phenylenediamine induced DNA damage and apoptosis through oxidative stress and enhanced caspase-8 and-9 activities in Mardin-Darby canine kidney cells. Toxicol In Vitro 24:1197–1202 (2010).CrossRefPubMedGoogle Scholar
  27. 27.
    Ohdaira, H., Sekiguchi, M., Miyata, K. & Yoshida, K. MicroRNA-494 suppresses cell proliferation and induces senescence in A549 lung cancer cells. Cell Prolif 45:32–38 (2012).CrossRefPubMedGoogle Scholar
  28. 28.
    Romano, G. et al. MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non-smallcell lung cancer through BIM down-regulation. Proc Natl Acad Sci U S A 109:16570–16575 (2012).CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Saini, S. et al. MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res 71:6208–6219 (2011).CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Wada, T. & Penninger, J. M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838–2849 (2004).CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18 (2002).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hwa Jun Cha
    • 1
  • Ok-Kyu Lee
    • 1
  • Soo Yeon Kim
    • 1
  • Jung-Min Ko
    • 1
  • Su Young Kim
    • 1
  • Ji Hye Son
    • 1
  • Hyun Joo Han
    • 1
  • Shunhua Li
    • 2
  • Soo Young Kim
    • 3
  • Kyu Joong Ahn
    • 3
  • In-Sook An
    • 1
  • Sungkwan An
    • 1
  • Seunghee Bae
    • 1
    Email author
  1. 1.Korea Institute for Skin and Clinical Sciences and Molecular-Targeted Drug Research CenterKonkuk UniversitySeoulKorea
  2. 2.Department of Beauty Education, Graduate School of EducationKonkuk UniversitySeoulKorea
  3. 3.Department of DermatologyKonkuk University School of MedicineSeoulKorea

Personalised recommendations