Advertisement

Molecular & Cellular Toxicology

, Volume 9, Issue 3, pp 205–210 | Cite as

Toxicity evaluation of inorganic nanoparticles: considerations and challenges

  • Soo-Jin ChoiEmail author
  • Jong Kwon Lee
  • Jayoung Jeong
  • Jin-Ho ChoyEmail author
Review Paper

Abstract

Toxicity evaluation of inorganic nanoparticles in cell lines and in whole animals has been extensively explored in recent years. However, conflicting results have been reported regarding size-dependent toxicity and biokinetics in vitro and in vivo, and thus, basic questions regarding whether nanoparticles, ranged from 1 to 100 nm in size, are comparatively more toxic than larger-sized particles remain unanswered. This may be closely associated with changes in physicochemical properties of nanoparticles in biological fluids. Understanding in vivo physiological barriers, biological fates, and absorption mechanism of nanoparticles upon exposure routes will be useful to predict their toxicity potential. This review will highlight the critical points to be considered in order to evaluate the toxicity of inorganic nanoparticles, and discuss the issues and challenges emerging in the field of nanotoxicology.

Keywords

Inorganic nanoparticles Toxicity Physicochemical property Physiological barriers Absorption mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi, S. J. & Choy, J. H. Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine (Lond) 6: 803–814 (2011).CrossRefGoogle Scholar
  2. 2.
    Xia, T., Li, N. & Nel, A. E. Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150 (2009).PubMedCrossRefGoogle Scholar
  3. 3.
    Choi, S. J., Oh, J. M. & Choy, J. H. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103:463–471 (2009).PubMedCrossRefGoogle Scholar
  4. 4.
    Fernandez, D., Garcia-Gomez, C. & Babin, M. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Sci Total Environ 452–453:262–274 (2013).PubMedCrossRefGoogle Scholar
  5. 5.
    Cho, W. S. et al. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9 (2013).PubMedCrossRefGoogle Scholar
  6. 6.
    Wang, J. et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185 (2007).PubMedCrossRefGoogle Scholar
  7. 7.
    Khlebtsov, N. & Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671 (2011).PubMedCrossRefGoogle Scholar
  8. 8.
    Almeida, J. P., Chen, A. L., Foster, A. & Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 6:815–835 (2011).CrossRefGoogle Scholar
  9. 9.
    Podila, R. & Brown, J. M. Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol 27:50–55 (2013).PubMedCrossRefGoogle Scholar
  10. 10.
    Lai, D. Y. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward. WIRES Nanomed Nanobi 4:1–15 (2012).CrossRefGoogle Scholar
  11. 11.
    Klien, K. & Godnic-Cvar, J. Genotoxicity of metal nanoparticles: focus on in vivo studies. Arh Hig Rada Toksikol 63:133–145 (2012).PubMedCrossRefGoogle Scholar
  12. 12.
    Teeguarden, J. G. et al. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    Campagnolo, L. et al. Physico-chemical properties mediating reproductive and developmental toxicity of engineered nanomaterials. Curr Med Chem 19:4488–4494 (2012).PubMedCrossRefGoogle Scholar
  14. 14.
    Oberdorster, G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105 (2010).PubMedCrossRefGoogle Scholar
  15. 15.
    Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. P Natl Acad Sci USA 105:14265–14270 (2008).CrossRefGoogle Scholar
  16. 16.
    Sasidharan, N. P., Chandran, P. & Sudheer Khan, S. Interaction of colloidal zinc oxide nanoparticles with bovine serum albumin and its adsorption isotherms and kinetics. Colloid Surface B 102:195–201 (2013).CrossRefGoogle Scholar
  17. 17.
    Lousinian, S., Missopolinou, D. & Panayiotou, C. Fibrinogen adsorption on zinc oxide nanoparticles: a Micro-Differential Scanning Calorimetry analysis. J Colloid Interf Sci 395:294–299 (2013).CrossRefGoogle Scholar
  18. 18.
    Deng, Z. J. et al. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20: 455101–455109 (2009).PubMedCrossRefGoogle Scholar
  19. 19.
    Sharma, V. K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:1485–1495 (2009).PubMedCrossRefGoogle Scholar
  20. 20.
    Albanese, A., Tang, P. S. & Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann Rev Biomed Eng 14:1–16 (2012).CrossRefGoogle Scholar
  21. 21.
    Kendall, M. & Holgate, S. Health impact and toxicological effects of nanomaterials in the lung. Respirology 17:743–758 (2012).PubMedCrossRefGoogle Scholar
  22. 22.
    Waalewijn-Kool, P. L., Ortiz, M. D., Lofts, S. & van Gestel, C. A. The effect of pH on the toxicity of ZnO nanoparticles to Folsomia candida in amended field soil. Environ Toxicol Chem DOI: 10.1002/etc.2302 (2013).Google Scholar
  23. 23.
    Misra, S. K. et al. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232 (2012).PubMedCrossRefGoogle Scholar
  24. 24.
    Li, M., Lin, D. & Zhu, L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102 (2013).PubMedCrossRefGoogle Scholar
  25. 25.
    Mudunkotuwa, I. A., Rupasinghe, T., Wu, C. M. & Grassian, V. H. Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396–403 (2012).PubMedCrossRefGoogle Scholar
  26. 26.
    Dobias, J. & Bernier-Latmani, R. Silver Release from Silver Nanoparticles in Natural Waters. Environ Sci Technol 47:4140–4146 (2013).PubMedCrossRefGoogle Scholar
  27. 27.
    Loeschner, K. et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18 (2011).PubMedCrossRefGoogle Scholar
  28. 28.
    Gilbert, B. et al. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS nano 6:4921–4930 (2012).PubMedCrossRefGoogle Scholar
  29. 29.
    Larner, F. et al. Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. Environ Sci Technol 46:12137–12145 (2012).PubMedCrossRefGoogle Scholar
  30. 30.
    Baek, M. et al. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomed 7:3081–3097 (2012).Google Scholar
  31. 31.
    Diedrich, T. et al. The dissolution rates of SiO2 nanoparticles as a function of particle size. Environ Sci Technol 46:4909–4915 (2012).PubMedCrossRefGoogle Scholar
  32. 32.
    Shahbazi, M. A. & Santos, H. A. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab 14:28–56 (2013).PubMedCrossRefGoogle Scholar
  33. 33.
    des Rieux, A. et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27 (2006).PubMedCrossRefGoogle Scholar
  34. 34.
    Park, K. et al. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res 34:153–158 (2011).PubMedCrossRefGoogle Scholar
  35. 35.
    Owens, D. E., 3rd & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102 (2006).PubMedCrossRefGoogle Scholar
  36. 36.
    Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3:703–717 (2008).CrossRefGoogle Scholar
  37. 37.
    Choi, H. S. et al. Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    Donaldson, K. & Poland, C. A. Inhaled nanoparticles and lung cancer — what we can learn from conventional particle toxicology. Swiss Med Wkly 142:w13547 (2012).PubMedGoogle Scholar
  39. 39.
    Klein, C. L. et al. Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol 86:1137–1151 (2012).PubMedCrossRefGoogle Scholar
  40. 40.
    Castranova, V. Overview of current toxicological knowledge of engineered nanoparticles. J Occup Environ Med 53:S14–17 (2011).PubMedCrossRefGoogle Scholar
  41. 41.
    Crosera, M. et al. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occ Env Hea 82:1043–1055 (2009).CrossRefGoogle Scholar
  42. 42.
    Gulson, B. et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118:140–149 (2010).PubMedCrossRefGoogle Scholar
  43. 43.
    Hirai, T. et al. Dermal absorption of amorphous nanosilica particles after topical exposure for three days. Pharmazie 67:742–743 (2012).PubMedGoogle Scholar
  44. 44.
    Ohlson, M., Sorensson, J. & Haraldsson, B. A gelmembrane model of glomerular charge and size selectivity in series. Am J Physiol-Renal 280:F396–405 (2001).Google Scholar
  45. 45.
    Xu, Z. P., Zeng, Q. H., Lu, G. Q. & Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040 (2006).CrossRefGoogle Scholar
  46. 46.
    Oh, J. M., Choi, S. J., Kim, S. T. & Choy, J. H. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrinmediated endocytosis. Bioconjug Chem 17:1411–1417 (2006).PubMedCrossRefGoogle Scholar
  47. 47.
    Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu Rev Biochem 78:857–902 (2009).PubMedCrossRefGoogle Scholar
  48. 48.
    He, C., Yin, L., Tang, C. & Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials 33:8569–8578 (2012).PubMedCrossRefGoogle Scholar
  49. 49.
    van der Lubben, I. M., Verhoef, J. C., Borchard, G. & Junginger, H. E. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207 (2001).PubMedCrossRefGoogle Scholar
  50. 50.
    Prego, C., Torres, D. & Alonso, M. J. The potential of chitosan for the oral administration of peptides. Expert Opin Drug Del 2:843–854 (2005).CrossRefGoogle Scholar
  51. 51.
    Ishizawa, T., Hayashi, M. & Awazu, S. Paracellular and transcellular permeabilities of fosfomycin across small intestinal membrane of rat and rabbit by voltageclamp method. J Pharmacobiody 14:583–589 (1991).CrossRefGoogle Scholar
  52. 52.
    Li, C. H. et al. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746–756 (2012).PubMedCrossRefGoogle Scholar
  53. 53.
    Jenkins, J. T. et al. Excretion and toxicity of gold-iron nanoparticles. Nanomedicine 9:356–365 (2013).PubMedCrossRefGoogle Scholar
  54. 54.
    Paek, H. J. et al. Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale DOI: 10.1039/C3NR02140H (2013).Google Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Food Science and TechnologySeoul Women’s UniversitySeoulKorea
  2. 2.Toxicological Research Division, National Institute of Food & Drug Safety EvaluationKFDAChungchungbuk-doKorea
  3. 3.Center for Intelligent Nano-Bio Materials (CINBM), Department of Bioinspired Science and Department of Chemistry and Nano Science (Ewha Global Top 5 program-2011)Ewha Womans UniversitySeoulKorea

Personalised recommendations