Molecular & Cellular Toxicology

, Volume 8, Issue 3, pp 249–256 | Cite as

Pycnogenol® prevents hexavalent chromium-induced spermatotoxicity in rats

  • Sung-Hwan Kim
  • In-Chul Lee
  • Hyung-Seon Baek
  • Changjong Moon
  • Seong-Soo Kang
  • Chun-Sik Bae
  • Sung-Ho Kim
  • Dong-Ho Shin
  • Jong-Choon KimEmail author
Original Paper


This study evaluated the ability of Pycnogenol ® (PYC) as an antioxidant to protect against hexavalent chromium [Cr(VI)]-induced spermatotoxicity and oxidative damage in rats. Twenty-four male rats were randomly assigned to four experimental groups: vehicle control, Cr(VI), Cr(VI)&PYC 10, and Cr(VI) &PYC 20 groups. Spermatotoxicity was assessed by reproductive organ weights, sperm analysis, and oxidative damage in testes and epididymides. The 6-day repeated oral dose of Cr(VI) produced a significant decrease in the sperm head count and sperm motility. Increased malondialdehyde (MDA) concentration and reduced glutathione (GSH) content, and decreased catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities were also observed in both testicular and epididymal tissues. On the contrary, concomitant administration of PYC significantly attenuated Cr(VI)-induced spermatotoxicity, as evidenced by the elevation of sperm head count and sperm motility in a dose-dependent manner. PYC treatment also reduced MDA concentration and increased GSH levels and CAT, SOD, and GST activities in testicular and epididymal tissues, indicating that concomitant administration with PYC efficiently prevented the Cr (VI)-induced oxidative damage in rats. These results indicate that PYC has a protective effect on spermatotoxicity induced by Cr(VI) in rats, and that the protective effects of PYC may be due to both the inhibition of lipid peroxidation and the increase in antioxidant activity.


Hexavalent chromium Pycnogenol® Spermatotoxicity Oxidative stress Protective effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sharpe, R. M. Declining sperm counts in men — is there an endocrine cause? J Endocrinol 136:357–360 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    Alexander, B. H. et al. Lung cancer in chromate-exposed aerospace workers. J Occup Environ Med 38: 1253–1258 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    Saryan, L. A. & Reedy, M. Chromium determinations in a case of chromic acid ingestion. J Anal Toxicol 12: 162–164 (1988).PubMedGoogle Scholar
  4. 4.
    Von Burg, R. & Liu, D. Chromium and hexavalent chromium. J Appl Toxicol 13:225–230 (1993).CrossRefGoogle Scholar
  5. 5.
    Elbetieha, A. & Al-Hamood, M. H. Long-term exposure of male and female mice to trivalent and hexavalent chromium compounds: effect on fertility. Toxicology 116:39–47 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    Bataineh, H., Al-Hamood, M. H., Elbetieha, A. & Bani Hani, I. Effect of long-term ingestion of chromium compounds on aggression, sex behavior and fertility in adult male rat. Drug Chem Toxicol 20:133–149 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    Ernst, E. Testicular toxicity following short-term exposure to tri- and hexavalent chromium: an experimental study in the rat. Toxicol Lett 51:269–275 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    Li, H. et al. Effect of Cr (VI) exposure on sperm quality: human and animal studies. Ann Occup Hyg 45:505–511 (2001).PubMedGoogle Scholar
  9. 9.
    Katz, S. A. & Salem, H. The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    Bagchi, D. et al. Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radical Biol Med 22:471–478 (1997).CrossRefGoogle Scholar
  11. 11.
    Bagchi, D., Bagchi, M. & Stohs, S. J. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem 222:149–158 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    Bagchi, D. et al. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180: 5–22 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    Boşgelmez I. I., Söylemezoğlu, T. & Güvendik, G. The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue. Biol Trace Elem Res 125:46–58 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    Soudani, N. et al. Protective effects of selenium (Se) on chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Saf 73:671–678 (2010).PubMedCrossRefGoogle Scholar
  15. 15.
    Das, K. K., Dhundasi, S. A. & Das, S. N. Hexavalent chromium and its effect on health: possible protective role of garlic (Allium sativum Linn). J Basic Clin Physiol Pharmacol 22:3–10 (2011).PubMedCrossRefGoogle Scholar
  16. 16.
    Packer, L., Rimbach, G. & Virgili, F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radical Bio Med 27:704–724 (1999).CrossRefGoogle Scholar
  17. 17.
    Rohdewald, P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharm Ther 40:158–168 (2002).Google Scholar
  18. 18.
    Elstner, E. F. & Kleber, E. Radical Scavenger properties of leucocyanidine. In: Das, N. P. (Ed), Flavonoids in biology and medicine IIIcurrent issues in flavonoids research. Natl Univ of Singapore Press, Singapore, pp. 227–235 (1990).Google Scholar
  19. 19.
    Bors, W. & Michel, C. Chemistry of the antioxidant effect of polyphenols. Ann NY Acad Sci 957:57–69 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    Guo, Q., Zhao, B. & Packer, L. Electron spin resonance study of free radicals formed from a procyanidin-rich pine (Pinus maritima) bark extract, pycnogenol. Free Radical Bio Med 27:1308–1312 (1999).CrossRefGoogle Scholar
  21. 21.
    Yang, Y. S. et al. Protective effects of Pycnogenol® on carbon tetrachloride-induced hepatotoxicity in Sprague-Dawley rats. Food Chem Toxicol 46:380–387 (2008).PubMedCrossRefGoogle Scholar
  22. 22.
    Hsieh, Y. Y., Chang, C. C. & Lin, C. S. Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci 2:23–29 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    Thiele, J. J. et al. Ascorbic acid and urate in human seminal plasma: determination and interrelationships with chemiluminescence in washed semen. Hum Reprod 10:110–115 (1995).PubMedCrossRefGoogle Scholar
  24. 24.
    Aitken, R. J., Buckingham, D. & Harkiss, D. Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil 97:441–450 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    Alvarez, J. G. & Storey, B. T. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev 42:334–346 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    Sivonová, M. et al. The effect of Pycnogenol on the erythrocyte membrane fluidity. Gen Physiol Biophys 23:39–51 (2004).PubMedGoogle Scholar
  27. 27.
    Zi, S. X. et al. Oligomeric proanthocyanidins from grape seeds effectively inhibit ultraviolet-induced melanogenesis of human melanocytes in vitro. Int J Mol Med 23:197–204 (2009).PubMedGoogle Scholar
  28. 28.
    Sugiyama, M. Role of physiological antioxidants in chromium (VI)-induced cellular injury. Free Radical Biol Med 12:397–407 (1992).CrossRefGoogle Scholar
  29. 29.
    Ernst, E. & Bonde, J. P. Sex hormones and epididymal sperm parameters in rats following sub-chronic treatment with hexavalent chromium. Hum Exp Toxicol 11:255–258 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    Vaca, C. E., Wilhelm, J. & Harms-Ringdahl, M. Interaction of lipid peroxidation products with DNA. A review. Mutat Res 195:137–149 (1998).Google Scholar
  31. 31.
    Hockenbery, D. M. et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605 (1979).PubMedGoogle Scholar
  33. 33.
    Geetha, S. et al. Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium (VI) induced oxidative stress in albino rats. J Ethnopharmacol 87:247–251 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, X. F. et al. Oral administration of Cr (VI) induced oxidative stress, DNA damage and apoptotic cell death in mice. Toxicology 228:16–23 (2006).PubMedCrossRefGoogle Scholar
  35. 35.
    Chandra, A. K., Chatterjee, A., Ghosh, R. & Sarkar, M. Effect of curcumin on chromium-induced oxidative damage in male reproductive system. Environ Toxicol Pharmacol 24:160–166 (2007).PubMedCrossRefGoogle Scholar
  36. 36.
    Akunna, G. G. et al. Ameliorative effect of Moringa oleifera (drumstick) leaf extracts on chromium-induced testicular toxicity in rat testes. World J Life Sci Med Res 2:20 (2012).Google Scholar
  37. 37.
    Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    Acharya, U. R., Mishra, M., Tripathy, R. R. & Mishra, I. Testicular dysfunction and antioxidative defense system of Swiss mice after chromic acid exposure. Reprod Toxicol 22:87–91 (2002).CrossRefGoogle Scholar
  39. 39.
    Moini, H., Guo, Q. & Packer, L. Enzyme inhibition and protein-binding action of the procyanidin-rich french maritime pine bark extract, pycnogenol: effect on xanthine oxidase. J Agric Food Chem 48:5630–5639 (2000).PubMedCrossRefGoogle Scholar
  40. 40.
    Roseff, S. J. Improvement in sperm quality and function with French maritime pine tree bark extract. J Reprod Med 47:821–824 (2002).PubMedGoogle Scholar
  41. 41.
    Stanislavov, R., Nikolova, V. & Rohdewald, P. Improvement of seminal parameters with Prelox®: a randomized, double-blind, placebo-controlled, cross-over trial. Phytother Res 23:297–302 (2009).PubMedCrossRefGoogle Scholar
  42. 42.
    Kim, J. C., Kim, K. H. & Chung, M. K. Testicular cytotoxicity of DA-125, a new anthracycline anticancer agent, in rats. Reprod Toxicol 13:391–397 (1999).PubMedCrossRefGoogle Scholar
  43. 43.
    Chung, M. K., Han, S. S. & Kim, J. C. Evaluation of the toxic potentials of a new camptothecin anticancer agent CKD-602 on fertility and early embryonic development in rats. Regul Toxicol Pharmacol 45:273–281 (2006).PubMedCrossRefGoogle Scholar
  44. 44.
    Berton, T. R. et al. The effect of vitamin E acetate on ultraviolet-induced mouse skin carcinogenesis. Mol Carcinogen 23:175–184 (1998).CrossRefGoogle Scholar
  45. 45.
    Moron, M. S., Depierre, J. W. & Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78 (1979).PubMedCrossRefGoogle Scholar
  46. 46.
    Aebi, H. Catalase in vitro. In: Packer, L. (Ed.), Methods in Enzymology, vol. 105. Academic Press, San Diego, pp. 121–126 (1984).Google Scholar
  47. 47.
    McCord, J. M. & Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055 (1969).PubMedGoogle Scholar
  48. 48.
    Habig, W. H. et al. 2-Propylthiouracil does not replace glutathione for the glutathione transferases. J Biol Chem 259:7409–7410 (1984).PubMedGoogle Scholar
  49. 49.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 (1976).PubMedCrossRefGoogle Scholar
  50. 50.
    Dunnett, C. W. New tables for multiple comparisons with a control. Biometrics 20:482–491 (1964).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Sung-Hwan Kim
    • 1
  • In-Chul Lee
    • 1
  • Hyung-Seon Baek
    • 1
  • Changjong Moon
    • 1
  • Seong-Soo Kang
    • 1
  • Chun-Sik Bae
    • 1
  • Sung-Ho Kim
    • 1
  • Dong-Ho Shin
    • 1
  • Jong-Choon Kim
    • 1
    Email author
  1. 1.College of Veterinary MedicineChonnam National UniversityGwangjuKorea

Personalised recommendations