Skip to main content
Log in

Impact of miRNA deregulation on mRNA expression profiles in response to environmental toxicant, nonylphenol

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

MicroRNA (miRNA) are approximately 22nt RNA molecules with the ability to regulate gene expression by interacting with its target mRNA. Recent studies demonstrated that miRNA are responsible for determining cell fate and also plays an important role in cellular response to xenobiotics stress and other toxicological phenomenon. Also a number of reports have strengthened the correlation between altered miRNA expression and various cancers. In this study miRNA and mRNA expression profiling was carried out in in-vitro differentiating MCF-7 and HepG2 cell line to understand the effect of nonylphenol (NP), an industrially synthesized environmental toxicant. Analyzing the mRNA-miRNA interaction, we observed correlation between deregulated miRNAs and its predictive differentially expressed target mRNA. We also observed differential expression of two widely studied miRNAs, miR-21 and miR-34 in these cell lines. CTCF is found to be the predictive target of expressed miR-21 in MCF-7. In HepG2 cell line expressed MDM2 is found to be a predictive target of miR-34b. These results support the possible role of miRNA interaction in the expression of its target genes and also ability of environmental toxicant to deregulate miRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langford, K. H., Scrimshaw, M. D., Brikett, J. W. & Lester, J. N. Degradation of nonylphenolic surfactants in activated sludge batch tests. Water Research 39:870–876 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. Petrovic, M. et al. Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environ Toxicol Chem 21:37–46 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Soares, A., Guieysse, V., Jefferson, V., Cartmell, V. & Lester, J. N. Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049 (2008).

    Article  PubMed  CAS  Google Scholar 

  4. Petrovic, M., Barceló, D., Diaz, A. & Ventura, F. Low nanogram per liter determination of halogenated nonylphenols, nonylphenol carboxylates, and their non-halogenated precursors in water and sludge by liquid chromatography electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 14:516–527 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. Yang, D. K. & Ding, W. H. Determination of alkylphenolic residues in fresh fruits and vegetables by extractive steam distillation and gas chromatography-mass spectrometry. J Chromatogr A 1088:200–204 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. Jorge, E. et al. Migration of nonylphenol from plastic containers to water and a milk surrogate. J Agric Food Chem 52:2016–2020 (2004).

    Article  Google Scholar 

  7. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Farh, K. K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–699 (2005).

    Article  PubMed  Google Scholar 

  11. Ramkissoon, S. H. et al. Hematopoietic-specific micro-RNA expression in human cells. Leuk Res 30:643–647 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Sood, P., Krek, A., Zavolan, M., Macino, G. & Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNAexpression. Proc Natl Acad Sci USA 103:2746–2751 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Yamada, J., Kuramochi, Y., Takagi, M., Watanabe, T. & Suga, T. Human brain acyl-CoA hydrolase isoforms encoded by a single gene. Biochem Biophys Res Commun 299:49–56 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. Su, Z. et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Nat Acad Sci 95:14400–14405 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. Huang, E. Y. et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene 20:7051–7063 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. Bionaz, M. & Loor, J. J. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 Are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J Nutr 138:1019–1024 (2008).

    PubMed  CAS  Google Scholar 

  17. Beigneux, A. P. et al. Agpat6-a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J Lipid Res 47:734–744 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, L. et al. Integrative genomic analysis of phosphatidylinositol 3?-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res 13(18 Pt 1): 5314–5321 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. Frankel, L. B. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. Gramantieri, L. et al. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12:2189–2204 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. Burke, L. J., Zhang, R., Lutz, M. & Renkawitz, R. The thyroid hormone receptor and the insulator protein CTCF: two different factors with overlapping functions. J Steroid Biochem Mol Biol 83:49–57 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. Recillas-Targa, F. et al. Pigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med 10:554–568 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Chen, A. et al. Complementary analysis of microRNA and mRNA expression during phorbol 12-myristate 13-acetate (TPA)-induced differentiation of HL-60 cells. Biotechnol Lett 30:2045–2052 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. Pogribny, I. P. et al. The tumor-promoting activity of 2-acetylaminofluorene is associated with disruption of the p53 signaling pathway and the balance between apoptosis and cell proliferation. Toxicol Appl Pharmacol 235:305–311 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. Li, N. et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters 275:44–53 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. Hermeking, H. p53 enters the microRNA world. Cancer Cell 12:414–418 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. Corney, D. C. et al. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. Toledo, F. & Wahl, G. M. Regulating the p53 pathway in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. Okamura, S. et al. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol Cell 8:85–94 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102:849–862 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. Medoff, B. D. et al. CARMA3 mediates lysophosphatidic acid-stimulated cytokine secretion by bronchial epithelial cells. Am J Respir Cell Mol Biol 40:286–294 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. Salaspuro, M. Acetaldehyde as a common denominator and cumulative carcinogen in digestive tract cancers. Scand J Gastroenterol 24:1–15 (2009).

    Google Scholar 

  38. Guo, R., Zhong, L. & Ren, J. Overexpression of aldehyde dehydrogenase-2 (ALDH2) attenuates chronic alcohol exposure-induced apoptosis, change in Akt and Pim signaling in liver. Clin Exp Pharmacol P 36:463–468 (2009).

    Article  CAS  Google Scholar 

  39. Bravo, V., Rosero, S., Ricordi, C. & Pastori, R. L. Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem Biophys Res Commun 353:1052–1055 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yong Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, S., Kim, S.J., Park, HW. et al. Impact of miRNA deregulation on mRNA expression profiles in response to environmental toxicant, nonylphenol. Mol. Cell. Toxicol. 7, 259–269 (2011). https://doi.org/10.1007/s13273-011-0032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-011-0032-y

Keywords

Navigation