Advertisement

Molecular & Cellular Toxicology

, Volume 7, Issue 1, pp 15–24 | Cite as

Influence of ginsenoside-Re against myocardial infarction in isolated heart

  • Hyoung Bae Kim
  • Kyu Hee Lim
  • Chang-Won Kang
  • Bum Seok Kim
  • Yoon Seok Roh
  • Jungkee Kwon
  • Sokho Kim
  • Sohail Ejaz
  • Jong-Hoon Kim
Original Paper

Abstract

Ginsenosides, one of the well-known traditional herbal substance, frequently are used in South Korea for the prevention of cardiovascular disease. The effects of ginsenoside-Re (G-Re) on ischemia-induced heart were investigated through analyses of hemodynamic change including perfusion pressure, aortic flow, coronary flow, and cardiac output. Myocardial function was recorded. Administration of ginsenoside-Re significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output. The Administration of G-Re significantly recovered all of the hemodynamic parameters, except heart rate, after ischemia-reperfusion (I/R) injury (perfusion pressure: 78.49±3.98% vs. 66.61±3.3%, aortic flow volume: 59.26±2.29% vs. 42.68±2.17%, coronary flow volume: 74.89±2.88% vs. 52.89±2.81%, and cardiac output: 63.12±3.81% vs. 45.25±3.83%, P<0.01, respectively, normal control as 100%). The intracellular calcium ([Ca2+]i) content in cardiomyocytes was quantitatively determined. Administration of G-Re significantly prevented [Ca2+]i increase that had been induced by simulated I/R in vitro (P<0.01) in a dose-dependent manner, suggesting that the antiischemic role of G-Re is mediated by the inhibition of [Ca2+]i increase. Over all, we found that the administration of G-Re has cardioprotective effects on the isolated heart. The beneficial effects may be mediated through controlling the level of [Ca2+]i. These results indicate that G-Re has a distinct cardioprotective effect in an isolated rat heart.

Keywords

Ginsenoside-Re Ischemia-reperfusion injury Hemodynamics 

References

  1. 1.
    Rosamond, W. et al. Heart disease and stroke statistics- 2008 update. A report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 117:e25–e146 (2008).PubMedCrossRefGoogle Scholar
  2. 2.
    Thygesen, K., Alpert, J. S. & White, H. D. Universal definition of myocardial infarction. J Am Coll Cardiol 50:2173–2195 (2007).PubMedCrossRefGoogle Scholar
  3. 3.
    Rodríguez-Sinovas, A., Abdallah, Y., Piper, H. M. & Garcia-Dorado, D. Reperfusion injury as a therapeutic challenge in patients with acute myocardial infarction. Heart Fail Rev 12:207 (2007).PubMedCrossRefGoogle Scholar
  4. 4.
    Gross, G. J., Kersten, J. R. & Warltier, D. C. Mechanisms of postischemic contractile dysfunction. Ann Thorac Surg 68:1898–1904 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    Piper, H. M. & García-Dorado, D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 68:1913–1919 (1999)PubMedCrossRefGoogle Scholar
  6. 6.
    Verma, S. et al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 105:2332–2336 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    Fleming, P. R. A short history of cardiology. Amsterdam/Atlanta, G.A. Rodopi Publishers (1997).Google Scholar
  8. 8.
    Hardoon, S. L. et al. How much of the recent decline in the incidence of myocardial infarction in British men can be explained by changes in cardiovascular risk factors? Evidence from a prospective populationbased study. Circulation 117:598–604 (2008).PubMedCrossRefGoogle Scholar
  9. 9.
    Heidenreich, P. A. & McClellan, M. Trends in treatment and outcomes for acute myocardial infarction: 1975–1995. Am J Med 110:165–174 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    Luepker, R. V. Decline in incident coronary heart disease. Why are the rates falling? Circulation 117:592–593 (2008).PubMedCrossRefGoogle Scholar
  11. 11.
    Bolli, R. et al. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    Elz, J. S. & Nayler, W. G. Contractile recovery and reperfusion-induced calcium gain after ischemia in the isolated rat heart. Lab Invest 58:653–659 (1988).PubMedGoogle Scholar
  14. 14.
    Meissner, A. & Morgan, J. P. Contractile dysfunction and abnormal Ca2 modulation during postischemic reperfusion in rat heart. Am J Physiol-Heart C 268: H100–H111 (1995).Google Scholar
  15. 15.
    Piper, H. M. García-Dorado, D. & Ovize, M. A fresh look at reperfusion injury. Cardiovasc Res 38:291–300 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    Siegmund, B., Schlüter, K. D. & Piper, H. M. Calcium and the oxygen paradox. Cardiovasc Res 27:1778–1783 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    Steenbergen, C., Fralix, T. A. & Murphy, E. Role of increased cytosolic free calcium concentration in myocardial ischemic injury. Basic Res Cardio 88:456–470 (1993).CrossRefGoogle Scholar
  18. 18.
    Hu, S. Y. A contribution to our knowledge of ginseng. Am J Chinese Med 5:1–23 (1977).CrossRefGoogle Scholar
  19. 19.
    Chang, S. J., Suh, J. S., Jeon, B. H., Nam, K. Y. & Park, H. K. Vasorelaxing effect by protopanaxatriol and protopanaxadiol of panax ginseng in the pig coronary artery. Korean J Ginseng Sci 18:95–101 (1994).Google Scholar
  20. 20.
    Chen, X., Gillis, C. N. & Moalli, R. Vascular effects of ginsenosides in vitro. Brit J Pharmacol 82:485–491 (1984).Google Scholar
  21. 21.
    Han, K. H. et al. Effect of red ginseng on blood pressure in patients with essential hypertension and white coat hypertension. Am J Chinese Med 26:199–209 (1998).CrossRefGoogle Scholar
  22. 22.
    Sung, J. et al. Effects of red ginseng upon vascular endothelial function in patients with essential hypertension. Am J Chinese Med 28:205–216 (2000).CrossRefGoogle Scholar
  23. 23.
    Chen, X. & Fang, Y. X. Experimental study of Ginsenosides on myocardial ischemia and reperfusion injury. Natl Med J China 67:581–583 (1987).Google Scholar
  24. 24.
    Gillis, C. N. Panax ginseng pharmacology: Anitric oxide link? Biochem Pharmacol 54:1–8 (1997).PubMedCrossRefGoogle Scholar
  25. 25.
    Yang, Y., Hu, S. J., Li, L. & Chen, G. P. Cardioprotection by polysaccharide sulfate against ischemia/reperfusion injury in isolated rat hearts. Acta Pharmacol Sin 30:54–60 (2009)PubMedCrossRefGoogle Scholar
  26. 26.
    Galagudza, M., Kurapeev, D., Minasian, S., Valen, G. & Vaage, J. Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardio-Thorac 25:1006–1010 (2004).CrossRefGoogle Scholar
  27. 27.
    Yu, X. C. et al. Cardiac effects of the extract and active components of radix stephaniae tetrandrae. II. Myocardial infarct, arrhythmias, coronary arterial flow and heart rate in the isolated perfused rat heart. Life Sci 68:2863–2872 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    Kang, M. et al. Anti-ischemic effect of Aurantii Fructus on contractile dysfunction of ischemic and reperfused rat heart. J Ethnopharmacol 111:584–591 (2007).PubMedCrossRefGoogle Scholar
  29. 29.
    Tian, J. et al. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 374:92–97 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    Shen, L. & Zhang, J. Ginsenoside Rg1 increases ischemia- induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neurosci Lett 344:1–4 (2003).PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang, B. et al. Ginsenoside Rb(1) prevents image navigation disability, cortical infarction, and thalamic degeneration in rats with focal cerebral ischemia. J Stroke Cerebrovasc Dis 7:1–9 (1998).PubMedCrossRefGoogle Scholar
  32. 32.
    Bak, I. A. et al. Cardioprotective mechanisms of Prunus cerasus (Sour cherry) seed extract against ischemia-reperfusioninduced change in isolated rat hearts. Am J Physiol Heart Circ Physiol 291:H1329–H1336 (2006).PubMedCrossRefGoogle Scholar
  33. 33.
    Asano, G. et al. Pathogenesis and protection of ischemia and reperfusion injury in myocardium. J Nippon Med Sch 70:384–392 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    Barba, I. et al. Effect of intracellular lipid droplets on cytosolic Ca2+ and cell death during ischaemia-reperfusion injury in cardiomyocytes. J Physiol-Paris 587: 1331–1341 (2009).Google Scholar
  35. 35.
    Wang, Y. G. et al. Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes. Am J Physiol Heart Circ Physiol 295:H851–H859 (2008).PubMedCrossRefGoogle Scholar
  36. 36.
    Gill, S. S., Pulido, O. M., Mueller, R. W. & McGuire, P. F. Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res Bull 46:429–434 (1998).PubMedCrossRefGoogle Scholar
  37. 37.
    Gao, X. et al. NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardiomyocytes. Physiol Res 56:559–569 (2007).PubMedGoogle Scholar
  38. 38.
    Li, X. S., Uriuda, Y., Wang, Q. D., Norlander, R., Sjoquist, P. O. & Pernow, J. Role of L-arginine in preventing myocardial and endothelial injury following ischaemia/reperfusion in the rat isolated heart. Acta Pharmacol Sin 156:37–44 (1996).Google Scholar
  39. 39.
    Wu, T., Zhou, H., Jin, Z., Bi, S., Yang, X., Yi, D. & Liu, W. Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins. Eur J Pharmacol 613:93–99 (2009).PubMedCrossRefGoogle Scholar
  40. 40.
    Hallett, M. B. et al. Techniques for measuring and manipulating free Ca2+ in the cytosol and organelles of neutrophils. J Immunol Methods 232:77–88 (1999).PubMedCrossRefGoogle Scholar
  41. 41.
    Jovanovic, A., Alekseev, A. E., Lopez, J. R., Shen, W. K. & Terzic, A. Adenosine prevents hyperkalemia-induced calcium loading in cardiac cells: relevance for cardioplegia. Ann Thorac Surg 63:153–161 (1997).PubMedCrossRefGoogle Scholar
  42. 42.
    Kim, J. H. et al. Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 48:743–756 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Netherlands 2011

Authors and Affiliations

  • Hyoung Bae Kim
    • 1
  • Kyu Hee Lim
    • 1
  • Chang-Won Kang
    • 1
  • Bum Seok Kim
    • 2
  • Yoon Seok Roh
    • 2
  • Jungkee Kwon
    • 3
  • Sokho Kim
    • 3
  • Sohail Ejaz
    • 4
  • Jong-Hoon Kim
    • 1
  1. 1.Department of Veterinary Physiology, Biosafety Research Institute, College of Veterinary MedicineChonbuk National UniversityJeonjuKorea
  2. 2.Department of Veterinary Pathology, College of Veterinary MedicineChonbuk National UniversityChonbukKorea
  3. 3.Department of Laboratory Animal Medicine, College of Veterinary MedicineChonbuk National UniversityChonbukKorea
  4. 4.Department of Clinical Neurosciences, Neurology Unit, Addenbrooke’s HospitalUniversity of CambridgeCambridgeUK

Personalised recommendations