Advertisement

Molecular & Cellular Toxicology

, Volume 6, Issue 4, pp 370–377 | Cite as

Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals

  • Seong Il Jeong
  • Seung Eun Lee
  • Hana Yang
  • Young-Ho Jin
  • Cheung-Seog Park
  • Yong Seek ParkEmail author
Original Paper

Abstract

Compared to plant cellulose, bacterial cellulose synthesized by Gluconacetobacter xylinus has features such as high crystallinity, tensile strength and water absorption capacity; biocompatibility; resistance to degradation and low solubility that may be advantageous for engineered tissue. However, little information is available concerning the potential toxicity of bacterial cellulose-based biomaterials. The present study investigated the toxicity of bacterial cellulose nanofibers in vitro in human umbilical vein endothelial cells (HUVECs) using viability and flow cytometric assays and in vivo using C57/Bl6 mice. The absence of toxicity in vitro and in vivo supports the view that bacterial cellulose may be amenable for use as a tissue engineering biomaterial.

Keywords

Bacterial cellulose Gluconacetobacter xylinus Endothelial cells Tissue engineering Biocompatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cannon, R. E. & Anderson, S. M. Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447 (1991).CrossRefPubMedGoogle Scholar
  2. 2.
    Yamada, Y., Hoshino, K. & Ishikawa, T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251 (1997).CrossRefPubMedGoogle Scholar
  3. 3.
    Ross, P., Mayer, R. & Benziman, M. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58 (1991).PubMedGoogle Scholar
  4. 4.
    Shoda, M. & Sugano, Y. Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10: 1–8 (2005).CrossRefGoogle Scholar
  5. 5.
    Klemm, D., Schumann, D., Udhardt, U. & Marsch, S. Bacterial synthesized cellulose — artificial blood vessels for microsurgery. Prog Polymer Sci 26:1561–1603 (2001).CrossRefGoogle Scholar
  6. 6.
    El-Saied, H., El-Diwany, A. I., Basta, A. H., Atwa, N. A. & El-Ghwas, D. E. Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217 (2008).Google Scholar
  7. 7.
    Lee, H. C. & Zhao, X. The optimal medium composition for the production of microbial cellulose by acetobacter xylinum. Korean J Biotechnol Bioeng 11:550–556 (1996).Google Scholar
  8. 8.
    Iguchi, M., Yamanaka, S. & Budhiono, A. Bacterial cellulose-a masterpiece of nature’s arts. J Mat Sci 35:261–270 (2000).CrossRefGoogle Scholar
  9. 9.
    Hioki, N. et al. Bacterial cellulose as a new material for papermaking. Japan TAPPI J 49:718–723 (1995).Google Scholar
  10. 10.
    Svensson, A. et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431 (2005).CrossRefPubMedGoogle Scholar
  11. 11.
    Fontana, J. D. et al. Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264 (1990).CrossRefPubMedGoogle Scholar
  12. 12.
    Rambo, C. R. et al. Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 28:549–554 (2008).Google Scholar
  13. 13.
    Esguerra, M. et al. Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res A 93:140–149.Google Scholar
  14. 14.
    Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51 (1995).CrossRefPubMedGoogle Scholar
  15. 15.
    Sgonc, R. & Gruber, J. Apoptosis detection: an overview. Exp Gerontol 33:525–533 (1998).CrossRefPubMedGoogle Scholar
  16. 16.
    Bodin, A. et al. Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434 (2007).CrossRefPubMedGoogle Scholar
  17. 17.
    Czaja, W., Krystynowicz, A., Bielecki, S. & Brown, R. M., Jr. Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151 (2006).CrossRefPubMedGoogle Scholar
  18. 18.
    Moreira, S. et al. BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett 189: 235–241 (2009).CrossRefPubMedGoogle Scholar
  19. 19.
    Anderson, R. L., Owens, J. W. & Timms, C. W. The toxicity of purified cellulose in studies with laboratory animals. Cancer Lett 63:83–92 (1992).CrossRefPubMedGoogle Scholar
  20. 20.
    Lorenz, E., Mira, J. P., Frees, K. L. & Schwartz, D. A. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032 (2002).CrossRefPubMedGoogle Scholar
  21. 21.
    Ulich, T. R. et al. The intratracheal administration of endotoxin and cytokines. I. Characterization of LPS-induced IL-1 and TNF mRNA expression and the LPS, IL-1-, and TNF-induced inflammatory infiltrate. Am J Pathol 138:1485–1496 (1991).PubMedGoogle Scholar
  22. 22.
    Sanchavanakit, N. et al. Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199 (2006).CrossRefPubMedGoogle Scholar
  23. 23.
    Dimmeler, S. & Zeiher, A. M. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 87:434–439 (2000).PubMedGoogle Scholar
  24. 24.
    Kalejta, R. F., Brideau, A. D., Banfield, B. W. & Beavis, A. J. An integral membrane green fluorescent protein marker, Us9-GFP, is quantitatively retained in cells during propidium iodide-based cell cycle analysis by flow cytometry. Exp Cell Res 248:322–328 (1999).CrossRefPubMedGoogle Scholar
  25. 25.
    Hsieh, J. K., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev 11:1840–1852 (1997).CrossRefPubMedGoogle Scholar
  26. 26.
    Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352 (1954).PubMedGoogle Scholar
  27. 27.
    Roman, M. & Winter, W. T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677 (2004).CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao, H. P., Feng, X. Q. & Gao, H. J. Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:1–2 (2007).Google Scholar
  29. 29.
    Updegraff, D. M. Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424 (1969).CrossRefPubMedGoogle Scholar
  30. 30.
    Park, Y. S. et al. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase. Arterioscler Thromb Vasc Biol 27:1319–1325 (2007).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Netherlands 2010

Authors and Affiliations

  • Seong Il Jeong
    • 1
  • Seung Eun Lee
    • 1
  • Hana Yang
    • 1
  • Young-Ho Jin
    • 2
  • Cheung-Seog Park
    • 1
  • Yong Seek Park
    • 1
    Email author
  1. 1.Department of Microbiology, School of MedicineKyung Hee UniversitySeoulKorea
  2. 2.Department of Physiology, School of MedicineKyung Hee UniversitySeoulKorea

Personalised recommendations