Skip to main content

Advertisement

Log in

Toxicoproteomic analysis of phalloidin-induced cholestasis in mouse liver

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Phalloidin induces cholestasis by preventing microfilament depolymerization. Phalloidin has been widely used as an agent to induce intrahepatic cholestasis in experimental animals. The objective of this study was to examine the effects of phalloidin on protein expression profiles in mouse liver, so as to identify potential biomarkers of intrahepatic cholestasis. Phalloidin was administered to BALB/c mice at a predetermined dose of 1 mg/kg for 7 days, and phalloidin-induced cholestasis was observed. Hepatic protein expression was investigated via two-dimensional (2D) electrophoresis, and 21 protein spots showing significantly different expression between the treated and control groups were excised from the gels and identified by MALDI-TOF/TOF. The identified proteins were involved in cytoskeletal changes, lipid metabolism, gluconeogenesis, detoxification, and transport mechanisms. Among these proteins, the up-regulation of HSP90-β in phalloidin-treated mice was confirmed by Western blot analysis and then by RT-PCR, indicating that it may serve as a useful biomarker of cholestasis. In summary, these results provide insight into the mechanism involved in phalloidin-induced cytoskeletal change and cholestasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishizaki, K. et al. The biochemical studies on phalloidin- induced cholestasis in rats. Toxicol Lett 90:29–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Dancker, P., Low, I., Hasselbach, W. & Wieland, T. Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim Biophys Acta 400:407–414 (1975).

    CAS  PubMed  Google Scholar 

  3. Dubin, M., Maurice, M., Feldmann, G. & Erlinger, S. Influence of colchicine and phalloidin on bile secretion and hepatic ultrastructure in the rat. Possible interaction between microtubules and microfilaments. Gastroenterology 79:646–654 (1980).

    CAS  PubMed  Google Scholar 

  4. Elias, E., Hruban, Z., Wade, J. B. & Boyer, J. L. Phalloidin-induced cholestasis: a microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci USA 77:2229–2233 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Vonk, R. J., Yousef, I. M., Corriveau, J. P. & Tuchweber, B. Phalloidin-induced morphological and functional changes of rat liver. Liver 2:133–140 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe, S., Miyairi, M., Oshio, C., Smith, C. R. & Phillips, M. J. Phalloidin alters bile canalicular contractility in primary monolayer cultures of rat liver. Gastroenterology 85:245–253 (1983).

    CAS  PubMed  Google Scholar 

  7. Frimmer, M. & Ziegler, K. The transport of bile acids in liver cells. Biochim Biophys Acta 947:75–99 (1988).

    CAS  PubMed  Google Scholar 

  8. Kawaji, A. et al. Effects of mushroom toxins on glycogenolysis; comparison of toxicity of phalloidin, alphaamanitin and DL-propargylglycine in isolated rat hepatocytes. J Pharmacobiodyn 15:107–112 (1992).

    CAS  PubMed  Google Scholar 

  9. Bouchard, G., Yousef, I. M., Barriault, C. & Tuchweber, B. Role of glutathione and oxidative stress in phalloidin-induced cholestasis. J Hepatol 32:550–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Lim, J. S. et al. Effects of phalloidin on hepatic gene expression in mice. Int J Toxicol 26:213–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Wetmore, B. A. & Merrick, B. A. Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol 32:619–642 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto, T., Kikkawa, R., Yamada, H. & Horii, I. Investigation of proteomic biomarkers in in vivo hepatotoxicity study of rat liver: toxicity differentiation in hepatotoxicants. J Toxicol Sci 31:49–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Leung, C. L., Green, K. J. & Liem, R. K. Plakins: a family of versatile cytolinker proteins. Trends Cell Biol 12:37–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Leung, C. L., Sun, D., Zheng, M., Knowles, D. R. & Liem, R. K. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 147:1275–1286 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell 115:343–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Omary, M. B., Ku, N. O. & Toivola, D. M. Keratins: guardians of the liver. Hepatology 35:251–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann, H., Hesse, M., Reichenzeller, M., Aebi, U. & Magin, T. M. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. Int Rev Cytol 223:83–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ku, N. O. et al. Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies. Proc Natl Acad Sci USA 100:6063–6068 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Toivola, D. M. et al. Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease. Hepatology 40:459–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Zatloukal, K. et al. The keratin cytoskeleton in liver diseases. J Pathol 204:367–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Borghoff, S. J., Short, B. G. & Swenberg, J. A. Biochemical mechanisms and pathobiology of alpha 2u-globulin nephropathy. Annu Rev Pharmacol Toxicol 30:349–367 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Dominick, M. A. et al. Alpha 2u-globulin nephropathy without nephrocarcinogenesis in male Wistar rats administered 1-(aminomethyl) cyclohexaneacetic acid. Toxicol Appl Pharmacol 111:375–387 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, S., Qualls, C. W. Jr., Reddy, G. & Stair, E. L. 1,3,5-Trinitrobenzene-induced alpha-2u-globulin nephropathy. Toxicol Pathol 25:195–201 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Gluckmann, M. et al. Prevalidation of potential protein biomarkers in toxicology using iTRAQ reagent technology. Proteomics 7:1564–1574 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. Horio, F., Kimura, M. & Yoshida, A. Effect of several xenobiotics on the activities of enzymes affecting ascorbic acid synthesis in rats. J Nutr Sci Vitaminol (Tokyo) 29:233–247 (1983).

    CAS  Google Scholar 

  26. Craig, E. A., Gambill, B. D. & Nelson, R. J. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414 (1993).

    CAS  PubMed  Google Scholar 

  27. Kleizen, B. & Braakman, I., Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Singh, M. P., Reddy, M. M., Mathur, N., Saxena, D. K. & Chowdhuri, D. K. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation. Toxicol Appl Pharmacol 235:226–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Martins, E. B., Chapman, R. W., Marron, K. & Fleming, K. A. Biliary expression of heat shock protein: a non-specific feature of chronic cholestatic liver diseases. J Clin Pathol 49:53–56 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Sakisaka, S. et al. Ursodeoxycholic acid reduces expression of heat shock proteins in primary biliary cirrhosis. Liver 20:78–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Liang, P. & MacRae, T. H. Molecular chaperones and the cytoskeleton. J Cell Sci 110:1431–1440 (1997).

    CAS  PubMed  Google Scholar 

  32. Yang, G. H., Li, S. & Pestka, J. J. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Toxicol Appl Pharmacol 162:207–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Antonov, A. et al. Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. Am J Respir Cell Mol Biol 39:551–559 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Choi, B. K., Cho, Y. M., Bae, S. H., Zoubaulis, C. C. & Paik, Y. K. Single-step perfusion chromatography with a throughput potential for enhanced peptide detection by matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics 3:1955–1961 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh V. S. Rana or Seokjoo Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heo, S.H., Oh, JH., Park, HJ. et al. Toxicoproteomic analysis of phalloidin-induced cholestasis in mouse liver. Mol. Cell. Toxicol. 6, 87–95 (2010). https://doi.org/10.1007/s13273-010-0012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-010-0012-7

Keywords

Navigation