A CFD benchmark of active flow control for buffet prevention

  • Fulvio SartorEmail author
  • Mauro Minervino
  • Jochen Wild
  • Stefan Wallin
  • Hans Maseland
  • Julien Dandois
  • Vitaly Soudakov
  • Petr Vrchota
Original Paper


This paper will present the main results of the aerodynamic design and analysis for flow control applied to trailing edge of wings and profiles. This work has been conducted in the framework of the European project AFLoNext aiming at developing technologies allowing for an improvement of the performance and loads situation in the operational domain. The technologies are expected to provide an increase in aerodynamic efficiency and a structural weight reduction for the design flight conditions with a potential for 1–2% fuel savings and corresponding emission reduction. Numerical simulations are performed on 2D and 3D test cases. Where available, a comparison with experimental data is performed. High-speed flow is considered, to investigate a transonic configuration representative of cruise conditions. Trailing edge devices (TED) such as fluidic Gurney flaps or micro-jets for circulation control are used for assessing the possibility of delaying the buffet onset or increasing the maximum achievable lift, thus extending the flight envelope of an aircraft. The purpose of the present paper is to present the result of the work performed by the different partners involved in the project.


RANS Transonic buffet Flow control Trailing edge device 

List of symbols


Angle of attack


Computational fluid dynamics


Drag coefficient

\(\hbox {Pi}_{\mathrm{TED}}\)

Total pressure of the TED


Chord of the profile


Pressure coefficient


Lift coefficient


Trailing edge device



The work described in this paper and the research leading to these results has received funding from the European Commission Seventh Framework Programme FP7/2007-2013, under Grant Agreement \(\hbox {n}^\circ\)604013, AFLoNext project. The authors are also grateful to Lars Tysell from FOI for providing some of the results for this study, and to Mark Nichols from BAE Systems for managing the work package.


  1. 1.
    Liebeck, R.H.: Design of subsonic airfoils for high lift. J. Aircr. 15(9), 547–561 (1978)CrossRefGoogle Scholar
  2. 2.
    Van Dam, C.P., Yen, D.T., Vijgen, P.M.: Gurney flap experiments on airfoil and wings. J. Aircr. 36(2), 484–486 (1999)CrossRefGoogle Scholar
  3. 3.
    Jeffrey, D., Zhang, X., Hurst David, W.: Aerodynamics of gurney flaps on a single-element high-lift wing. J. Aircr. 37(2), 295–301 (2000)CrossRefGoogle Scholar
  4. 4.
    Richter, K., Rosemann, H.: Steady aerodynamics of miniature trailing-edge devices in transonic flows. J. Aircr. 49(3), 898–910 (2012)CrossRefGoogle Scholar
  5. 5.
    Browaeys, G., Deniau, H., Collin, E., Bonnet, J.P.: Pneumatic control strategies for transonic buffet. a numerical approach. In: 7th International Symposium on Engineering Turbulence Modeling and Measurement (ETMM7), Limassol, 4–6 June, p. 805 (2008)Google Scholar
  6. 6.
    Caruana, D., Mignosi, A., Corrège, M., Le Pourhiet, A., Rodde, A.M.: Buffet and buffeting control in transonic flow. Aerosp. Sci. Technol. 9(7), 605–616 (2005)CrossRefGoogle Scholar
  7. 7.
    Dvorak, F.A., Choi, D.H.: Analysis of circulation-controlled airfoils in transonic flow. J. Aircr. 20(4), 331–337 (1983)CrossRefGoogle Scholar
  8. 8.
    Molton, P., Dandois, J., Lepage, A., Brunet, V., Bur, R.: Control of buffet phenomenon on a transonic swept wing. AIAA J. 51(4), 761–772 (2013)CrossRefGoogle Scholar
  9. 9.
    Dandois, J., Lepage, A., Dor, J.B., Molton, P., Ternoy, F., Geeraert, A., Brunet, V., Coustols, É.: Open and closed-loop control of transonic buffet on 3d turbulent wings using fluidic devices. Comptes Rendus Mécanique 342(6), 425–436 (2014)CrossRefGoogle Scholar
  10. 10.
    Heeb, N., Gutmark, E., Liu, J., Kailasanath, K.: Fluidically enhanced chevrons for supersonic jet noise reduction. AIAA J. 52(4), 799–809 (2014)CrossRefGoogle Scholar
  11. 11.
    Marongiu, C., Catalano, P., Amato, M., Iaccarino, G.: U-zen: a computational tool solving U-RANS equations for industrial unsteady applications. In: 34th AIAA Fluid Dynamics Conference and Exhibit (2004)Google Scholar
  12. 12.
    Cambier, L., Heib, S., Plot, S.: The ONERA elsA CFD software: input from research and feedback from industry. Mech. Ind. 14, 159–174 (2013)CrossRefGoogle Scholar
  13. 13.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. In: ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, 5–8 September 2006. Delft University of Technology; European Community on Computational Methods in Applied Sciences (ECCOMAS) (2006)Google Scholar
  14. 14.
    Eliasson, P.: EDGE, a Navier–Stokes solver for unstructured grids. Proc. Finite Vol. Complex Appl. III, 527–534 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Dandois, J., Gleyzes, C., Dor, J.-B., Ternoy, F, Coustols, E.: Report on the VZLU wind tunnel test analysis and report on the 3D RANS and URANS computations of mechanical/fluidic VGs and fluidic TEDs. AVERT Deliverables D1.3-3 & D1.3-8, June (2010)Google Scholar
  16. 16.
    Dandois, J., Dor, J.-B., Lepage, A., Brunet, V., Eglinger, E., Ternoy, F., Coustols, E.: AVERT: ONERA S2MA wind tunnel test report. AVERT Deliverable D4.3-4, June (2010)Google Scholar
  17. 17.
    Dandois, J., Molton, P., Lepage, A., Geeraert, A., Brunet, V., Dor, J.-B., Coustols, E.: Buffet characterisation and control for turbulent wings. Aerosp. Lab J. 6, 1–17 (2013)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  • Fulvio Sartor
    • 1
    Email author
  • Mauro Minervino
    • 2
  • Jochen Wild
    • 3
  • Stefan Wallin
    • 4
  • Hans Maseland
    • 5
  • Julien Dandois
    • 1
  • Vitaly Soudakov
    • 6
  • Petr Vrchota
    • 7
  1. 1.Aerodynamics, Aeroelasticity and Acoustics DepartmentONERAMeudonFrance
  2. 2.Fluid Mechanics DepartmentCIRACapuaItaly
  3. 3.Institute of Aerodynamics and Flow TechnologyDLRBrunswickGermany
  4. 4.Department of Mechanics, FLOW CentreKTHStockholmSweden
  5. 5.Netherlands Aerospace CentreNLRAmsterdamThe Netherlands
  6. 6.Department of AerodynamicsTsAGIZhukovskyRussia
  7. 7.Aeronautical Research and Test InstituteVZLUPragueCzech Republic

Personalised recommendations