Advertisement

CEAS Aeronautical Journal

, Volume 11, Issue 1, pp 229–248 | Cite as

Ice detection and protection systems for circular variable nacelle inlet concepts

  • S. KazulaEmail author
  • K. Höschler
Original Paper

Abstract

This paper presents the challenge of ice protection within a concept study for variable pitot inlets of aero engines in transonic and supersonic civil aviation. An overview of variable inlet concept groups that adjust the inlet geometry by rigid segment repositioning, elastic surface deformation, or boundary layer control is given. Ice detection mechanisms and various pneumatic, fluid, as well as electric ice protection systems are presented. These ice protection systems are assigned to the respective inlet concept groups and evaluated regarding economic, functional, and safety requirements by means of pairwise comparison and weighted point rating to determine the most suitable combinations.

Keywords

Ice protection in aviation Variable aero engine inlet Morphing nacelle intake 

Notes

References

  1. 1.
    European Commission: Flightpath 2050: Europe’s Vision for Aviation. Publ. Off. of the Europ. Union, Luxembourg (2011)Google Scholar
  2. 2.
    Kling, U et al.: Shape adaptive technology for aircraft engine nacelle inlets. In: Proc. of the Royal Aeronautical Society’s 5th Aircraft Structural Design Conference (2016)Google Scholar
  3. 3.
    Kondor, S., Moore, M.: Experimental investigation of a morphing nacelle ducted fan. In: Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1, pp. 435–468 (2004)Google Scholar
  4. 4.
    Ozdemir, N.G., et al.: Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel. Smart Mater. Struct. 24(12), 125018 (2015)CrossRefGoogle Scholar
  5. 5.
    Kazula, S., Höschler, K.: A systems engineering approach to variable intakes for civil aviation (Eng). In: Proceedings of the 7th European Conference for Aeronautics and Space Sciences (Eucass), Milan, Italy (2017)Google Scholar
  6. 6.
    S. Kazula and K. Höschler, “A systems engineering approach to variable intakes for civil aviation,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 095441001983690, 2019Google Scholar
  7. 7.
    SAE Aerospace, ARP4754A: Guidelines for Development of Civil Aircraft and Systems. SAE International, Warrendale (2010)Google Scholar
  8. 8.
    SAE Aerospace, ARP4761: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment. SAE International, Warrendale (1996)Google Scholar
  9. 9.
    Kazula, S., Grasselt, D., Höschler, K.: Preliminary safety assessment of circular variable nacelle inlet concepts for aero engines in civil aviation,” in A Balkema book, Safety and reliability - safe societies in a changing world: Proceedings of the 28th International European Safety and Reliability Conference (ESREL 2018), Trondheim, Norway, 17–21 June 2018, S. Haugen, A. Barros, C. van Gulijk, T. Kongsvik, and J. E. Vinnem, Eds., Boca Raton, London, New York, Leiden: CRC Press, Taylor et Francis Group, 2018, pp. 2459–2467Google Scholar
  10. 10.
    Kazula, S., Grasselt, D., Höschler, K.: Common Cause Analysis of Circular Variable Nacelle Inlet Concepts for Aero Engines in Civil Aviation. In: Silva Gomes, F., Meguid, S.A. (eds.) IRF2018: Proceedings of the 6th International Conference on Integrity-Reliability-Failure: (Lisbon/Portugal, 22–26 July 2018). Porto: FEUP-INEGI (2018)Google Scholar
  11. 11.
    Mattingly, J.D.: Elements of Propulsion: Gas Turbines and Rockets. American Institute of Aeronautics and Astronautics, Reston (2006)CrossRefGoogle Scholar
  12. 12.
    Rolls-Royce plc.: The Jet Engine. Wiley, Chichester (2015)Google Scholar
  13. 13.
    MacIsaac, B., Langton, R.: Gas Turbine Propulsion Systems, 1st edn. Wiley, Chichester (2011)CrossRefGoogle Scholar
  14. 14.
    Farokhi, S.: Aircraft Propulsion. Wiley, Chichester (2014)Google Scholar
  15. 15.
    EASA, CS-25: Certification specifications and acceptable means of compliance for large aeroplanes, Amendment 18 (2016)Google Scholar
  16. 16.
    Hedayati, R., Sadighi, M.: Bird Strike: An Experimental, Theoretical and Numerical Investigation. Woodhead Publishing, Cambridge (2016)CrossRefGoogle Scholar
  17. 17.
    Seddon, J., Goldsmith, E.L.: Intake Aerodynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (1999)CrossRefGoogle Scholar
  18. 18.
    Bräunling, W.J.G.: Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse, thermische Turbomaschinen, Komponenten, Emissionen und Systeme, 4th edn. Springer Vieweg, Berlin (2015)CrossRefGoogle Scholar
  19. 19.
    Luidens, R.W., Stockman, N.O., Diedrich, J.H.: An Approach to Optimum Subsonic Inlet Design. ASME, New York (1979)CrossRefGoogle Scholar
  20. 20.
    Pierluissi, A., Smith, C., Bevis, D.: intake lip design system for gas turbine engines for subsonic applications. In: 49th AIAA Aerospace Sciences Meeting, Orlando, Florida (2011)Google Scholar
  21. 21.
    Albert, M., Bestle, D.: automatic design evaluation of nacelle geometry using 3D-CFD. In: 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA (2014)Google Scholar
  22. 22.
    Schnell, R., Corroyer, J.: Coupled fan and intake design optimization for installed UHBR-engines with ultra-short nacelles. In: ISABE 2015Google Scholar
  23. 23.
    da Rocha-Schmidt, L., Hermanutz, A., Baier, H.: Progress towards adaptive aircraft engine nacelles. In: Proc. of the 29th Congress of the International Council of the Aeronautical Sciences (2014)Google Scholar
  24. 24.
    Kazula, S., Rich, B., Höschler, K., Woll, R.: Awakening the interest of high school pupils in science, technology, engineering and mathematics studies and careers through scientific projects. In: 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), Wollongong, NSW, pp. 259–265 (2018)Google Scholar
  25. 25.
    Akhras, G.: Nano & Smart NDE systems—applications in aerospace and perspectives. In: 4th International Symposium on NDT in Aerospace (2012)Google Scholar
  26. 26.
    Straub, F.K., et al.: Smart material-actuated rotor technology—SMART. J. Intell. Mater. Syst. Struct. 15(4), 249–260 (2004)CrossRefGoogle Scholar
  27. 27.
    Baier, H., Datashvili, L.: Active and morphing aerospace structures-a synthesis between advanced materials, structures and mechanisms. Int. J. Aeronaut. Space Sci. 12(3), 225–240 (2011)CrossRefGoogle Scholar
  28. 28.
    Monner, H., Kintscher, M., Lorkowski, T., Storm, S.: Design of a smart droop nose as leading edge high lift system for transportation aircrafts. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, 05042009, p. 3Google Scholar
  29. 29.
    Murugan, S., Friswell, M.I.: Morphing wing flexible skins with curvilinear fiber composites. Compos. Struct. 99, 69–75 (2013)CrossRefGoogle Scholar
  30. 30.
    Kintscher, M., Wiedemann, M.: Investigation of Multi-material laminates for smart droop nose devices. In: ICAS (2014)Google Scholar
  31. 31.
    Beguin, B., Breitsamter, C., Adams, N.: Experimental investigations of an elasto-flexible morphing wing concept. In: ICAS (2010)Google Scholar
  32. 32.
    Hermanutz, A., da Rocha-Schmidt, L., Baier, H.: Technology investigation of morphing inlet lip concepts for flight propulsion nacelles. In: EUCASS (2015)Google Scholar
  33. 33.
    Mischke, M., Kazula, S., Höschler, K.: A comparative concept study and evaluation for new broadband noise absorbing acoustic liner concepts for civil aviation. In: Proceedings of Global Power and Propulsion Society (2019)Google Scholar
  34. 34.
    Virginia Tech Intellectual Properties Inc.: Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors. US5355417AGoogle Scholar
  35. 35.
    Schlichting, H., Gersten, K., Krause, E.: Grenzschicht-Theorie: Mit 22 Tabellen, 10th edn. Springer-Verlag, Berlin Heidelberg, Berlin (2006)Google Scholar
  36. 36.
    Lueders, H.G.: Experimental Investigation of Advanced Concepts to Increase Turbine Blade Loading. NASA Lewis Research Center, Washington, DC (1968)Google Scholar
  37. 37.
    Braslow, A.L.: History of Suction-Type Laminar-Flow Control with Emphasis on Flight Research. Monograph in Aerospace History, No. 13. NASA, Washington, DC (1999)Google Scholar
  38. 38.
    Goraj, Z.: An Overview of the De-Icing and Anti-icing Technologies with Prospects for the Future. In: 24th International Congress of the Aeronautical Sciences (ICAS) (2004)Google Scholar
  39. 39.
    Blockley, R., Shyy, W. (eds.): Encyclopedia of Aerospace Engineering. Wiley Interscience, Hoboken (2010)Google Scholar
  40. 40.
    Gent, R.W., Dart, N.P., Cansdale, J.T.: Aircraft icing. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 358(1776), 2873–2911 (2000)CrossRefGoogle Scholar
  41. 41.
    Moir, I., Seabridge, A.G.: Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration, 3rd edn. Wiley, Chichester (2009)Google Scholar
  42. 42.
    Tropea, C., Schremb, M., Roisman, I.: Physics of SLD Impact and Solidification (Eng). In: Proc. of the 7th European Conference for Aeronautics and Space Sciences (Eucass) (2017)Google Scholar
  43. 43.
    Bansmer, S., Baumert, A.: From high altitude clouds to an icing wind tunnel: en route to understand ice crystal icing (Eng). In: Proc. of the 7th European Conference for Aeronautics and Space Sciences (Eucass) (2017)Google Scholar
  44. 44.
    McClain, S., Vargas, M., Tsao, J.-C., Broeren, A., Lee, S.: Ice Accretion Roughness Measurements and Modeling (Eng). In: Proc. of the 7th European Conference for Aeronautics and Space Sciences (Eucass) (2017)Google Scholar
  45. 45.
    Jackson. D., Goldberg, J.: Ice Detection Systems: a Historical Perspective. SAE Technical Paper 2007-01-3325 (2007).  https://doi.org/10.4271/2007-01-3325
  46. 46.
    Penny & Giles Avionic Systems Limited, “Ice Detector,” WO/1995/012523Google Scholar
  47. 47.
    FAA: Aircraft Ice Detectors and Related Technologies for Onground and Inflight Applications. FAA Technical Center, Springfield (1993)Google Scholar
  48. 48.
    UTC Aerospace Systems: Primary & Advisory Ice Detection Systems. Rosemount Aerospac Inc., Burnsville (2017)Google Scholar
  49. 49.
    Al-Khalil, K.: Thermo-Mechanical Expulsive Deicing System—TMEDS. 45th AIAA Aerospace Sciences Meeting and Exhibit, 8 January 2007–11 January 2007, Reno, Nevada. AIAA, Reston (2007)Google Scholar
  50. 50.
    Dynys, F., Kreeger, E., Sehirlioglu, A.: Multi-functional Coating for Icephobic Surfaces. NASA Glenn Research Center (2011). https://www.nari.arc.nasa.gov/sites/default/files/Dynys_2011_DraftReport.pdf
  51. 51.
    Martin, C.A., Putt, J.C.: Advanced pneumatic impulse ice protection system (PIIP) for aircraft. J. Aircr. 29(4), 714–716 (1992)CrossRefGoogle Scholar
  52. 52.
    CAV Ice Protection.: About TKS Ice Protection Systems. [Online] Available: https://www.caviceprotection.com/content/about-tks-ice-protection-systems. Accessed 13 Mar 2019
  53. 53.
    CAV Ice Protection.: TKS® DTD 406B Ice Protection Fluid. [Online] Available: https://www.caviceprotection.com/content/tks-fluid. Accessed 13 Mar 2019
  54. 54.
    Moir, I., Seabridge, A.G., Jukes, M.: Civil Avionics Systems. Wiley, Chichester (2013)CrossRefGoogle Scholar
  55. 55.
    Newton, D.W.: Severe Weather Flying, vol. 3. Aviation Supplies & Academics, op., Newcastle (2002)Google Scholar
  56. 56.
    Zumwalt, G.W., Shrag, R.L., Bernhart, W.D., Friedberg, R.A.: Electro-Impulse De-Icing Testing, Analysis and Design. NASA Lewis Research Center, Wichita (1988)Google Scholar
  57. 57.
    Bond, T.H., Shin, J., and Mesander, G.A.: Advanced ice protection systems test in the NASA Lewis icing research tunnel. In: 47th Annual Forum and Technology Display; Phoenix, AZ; United States (1991)Google Scholar
  58. 58.
    Cox & Company, Inc.: Low Power Ice Protection Systems. [Online] Available: http://www.coxandco.com/low_power_ips.html. Accessed 13 Aug 2018
  59. 59.
    Feldhusen, J., Grote, K.-H.: Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, 8th edn. Springer Vieweg, Berlin (2013)CrossRefGoogle Scholar
  60. 60.
    Ehrlenspiel, K., Kiewert, A., Lindemann, U., Mörtl, M.: Kostengünstig Entwickeln und Konstruieren: Kostenmanagement bei der integrierten Produktentwicklung, 7th edn. Springer Vieweg, Berlin (2014)CrossRefGoogle Scholar
  61. 61.
    Lindemann, U.: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden, 3rd edn. Springer-Verlag, Berlin Heidelberg, Berlin (2009)CrossRefGoogle Scholar
  62. 62.
    Verein Deutscher Ingenieure, VDI 2225 Blatt 1: Konstruktionsmethodik - Technisch-wirtschaftliches Konstruieren -Vereinfachte Kostenermittlung (1997)Google Scholar
  63. 63.
    Pahl, G., et al.: Engineering Design: A Systematic Approach. Springer-Verlag, London Limited, London (2007)CrossRefGoogle Scholar
  64. 64.
    Verein Deutscher Ingenieure, VDI 2225 Blatt 2: Konstruktionsmethodik - Technisch-wirtschaftliches Konstruieren - Tabellenwerk (1998)Google Scholar
  65. 65.
    Gent, R.W.: Ice detection and protection. In: Blockley, R., Shyy, W. (eds.) Encyclopedia of Aerospace Engineering, p. 7. Wiley Interscience, Hoboken (2010)Google Scholar
  66. 66.
    Kritzinger, D.: Aircraft System Safety: Assessments for Initial Airworthiness Certification. Woodhead Publishing, Duxford (2016)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.Chair of Aero Engine DesignBrandenburg University of TechnologyCottbusGermany

Personalised recommendations