Advertisement

Validation data for aircraft noise shielding prediction

  • Karl-Stéphane RossignolEmail author
  • Jan Werner Delfs
  • Michael Mößner
  • Markus Lummer
  • Jianping Yin
Original Paper
  • 33 Downloads

Abstract

The design of future low-noise aircraft will require an account of noise shielding as a fundamental design parameter. This aspect was already recognized in the 70s, where early experimental work set the ground on possible solutions to the conventional, short and reduced take-off and landing noise problem. The current low-noise aircraft design concepts of the hybrid-wing-body type require establishing a new knowledge base to allow an assessment of their potential noise benefit. Experimental work done in the course of the last 15 years slowly moved in this direction with the establishment of new testing methodologies. Currently available databases render an estimation of the turbomachinery noise shielding benefit of specific design choices on aircraft of the hybrid-wing-body type possible. Still, research in this domain would strongly benefit from the development of reliable and flexible numerical prediction methods. Recent experimental results obtained using a broadband non-intrusive laser-based sound source are presented. The methodology is used to conduct experiments on a wide range of configurations, providing an extensive high-quality validation database. The paper presents an overview of available datasets of dedicated experimental investigations, ranging from simple generic test cases to full 3D aircraft configurations, as well as comparisons with numerical results.

Keywords

Aeroacoustics Noise shielding Installation effects Wind tunnel testing CAA simulation Aeroacoustic simulation 

Notes

References

  1. 1.
    Thomas, R.H., Burley, C.L., Olson, E.D.: Hybrid wing body aircraft system noise assessment with propulsion airframe aeroacoustic experiments. Int. J. Aeroacoust. 11(3–4), 369–409 (2012)CrossRefGoogle Scholar
  2. 2.
    Guo, Y., Burley, C.L., Thomas, R.H.: On noise assessment for blended wing body aircraft. AIAA Pap. 2014, 365 (2014)Google Scholar
  3. 3.
    Reshotko, M., Olsen, W.A., Dorsch, R.G.: Preliminary noise tests of the engine-over-the-wing concept. 2: 10 deg–20 deg flap position (1972)Google Scholar
  4. 4.
    Dorsch, R.G., Reshotko, M., Olsen, W.A.: Flap noise measurements for STOL configurations using external upper surface blowing (1972)Google Scholar
  5. 5.
    Reshotko, M., Goodykoontz, J.H., Dorsch, R.G.: Engine-over-the-wing noise research (1973)Google Scholar
  6. 6.
    Hellstrom, G.: Noise shielding aircraft configurations, a comparison between predicted and experimental results. Ninth Congress of the International Council of Aeronautical Sciences, pp. 74–58 (1974)Google Scholar
  7. 7.
    Jeffery, R., Holbeche, T.: Experimental studies of noise-shielding effects for a delta-winged aircraft. AIAA Pap. 1975, 75 (1975)Google Scholar
  8. 8.
    Broadbent, E., Holbeche, T.A., Butler, G.F.: Interaction of a vortex core with acoustic radiation. Euromech 34 on Control and Feedback Mechanisms in Flow Noise, Göttingen (1972)Google Scholar
  9. 9.
    Clark, L.R., Gerhold, C.H.: Inlet noise reduction by shielding for the blended wing body airplane. AIAA Paper, No. 99–1937, 10–12 (1999)Google Scholar
  10. 10.
    Gerhold, C.H., Clark, L.R.: Database of inlet and exhaust noise shielding for wedge-shaped airframe. Tech. Rep. (2001)Google Scholar
  11. 11.
    Gerhold, C.H., Clark, L.R., Dunn, M.H., Tweed, J.: Investigation of acoustical shielding by a wedge-shaped airframe. J. Sound Vib. 294(1), 49–63 (2006)CrossRefGoogle Scholar
  12. 12.
    Ricouard, J., Davy, R., Loheac, P., Moore, A., Piccin, O.: Rosas wind tunnel test campaign dedicated to unconventional aircraft concepts study. 10th AIAA/CEAS Aeroacoustics Conference Manchester, UK (2004)Google Scholar
  13. 13.
    Papamoschou, D., Mayoral, S.: Experiments on shielding of jet noise by airframe surfaces. 15th AIAA/CEAS Aeroacoustics Conference, AIAA-2009-3326, Miami, Florida, USA (2009)Google Scholar
  14. 14.
    Czech, M.J., Thomas, R.H., Elkoby, R.: Propulsion airframe aeroacoustic integration effects for a hybrid wing body aircraft configuration. Int. J. Aeroacoust. 11(3–4), 335–367 (2012)CrossRefGoogle Scholar
  15. 15.
    Hutcheson, F.V., Brooks, T.F., Burley, C.L., Bahr, C.J., Stead, D.J., Pope, D.S.: Shielding of turbomachinery broadband noise from a hybrid wing body aircraft configuration. 22nd AIAA/CEAS Aeroacoustics Conference, AIAA 2016-2708, Lyon, France (2016)Google Scholar
  16. 16.
    Rossignol, K.-S., Lummer, M., Delfs, J.: Validation of DLR’s sound shielding prediction tool using a novel sound source. 11th AIAA/CEAS Aeroacoustics Conference, AIAA 2009-3329, Miami, USA (2009)Google Scholar
  17. 17.
    Rossignol, K.-S., Delfs, J.: Analysis of the noise shielding characteristics of a NACA0012 2D wing. 22nd AIAA/CEAS Aeroacoustics Conference, AIAA 2016–2795, Lyon, France (2016)Google Scholar
  18. 18.
    Yin, J., Rossignol, K.-S., Bulté, J.: Acoustic scattering experiments on spheres for studying helicopter noise scattering. Proceedings of the 42nd European Rotorcraft Forum, Lille, France (2016)Google Scholar
  19. 19.
    Rossignol, K.-S., Pott-Pollenske, M., Delfs, J., Silbermann, J., Pereira Gomes, J.M.: Investigating noise shielding by unconventional aircraft configurations. 23rd AIAA/CEAS Aeroacoustics Conference, AIAA 2017-3195, Denver, USA (2017)Google Scholar
  20. 20.
    Rossignol, K.-S., Delfs, J., Boden, F.: On the relevance of convection effects for a laser-generated sound source. 21st AIAA/CEAS Aeroacoustics Conference, AIAA 2015-3146. Dallas, USA (2015)Google Scholar
  21. 21.
    Hosoya, N., Nagata, M., Kajiwara, I.: Acoustic testing in a very small space based on a point sound source generated by laser-induced breakdown: stabilization of plasma formation. J. Sound Vib. 332(19), 4572–4583 (2013)CrossRefGoogle Scholar
  22. 22.
    Radziemski, L., Cremers, D.: Laser Induced Plasmas and Applications. Marcel Dekker Inc., New-York (1989)Google Scholar
  23. 23.
    Phuoc, T.X., White, C.M.: Experimental studies of the absorption and emissions from laser-induced spark in combustible gases. Opt. Commun. 181(4), 353–359 (2000)CrossRefGoogle Scholar
  24. 24.
    Chen, Y.-L., Lewis, J., Parigger, C.: Spatial and temporal profiles of pulsed laser-induced air plasma emissions. J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000)CrossRefGoogle Scholar
  25. 25.
    Ostrovskaya, G., Zaĭdel’, A.: Laser spark in gases. Phys. Uspekhi 16(6), 834–855 (1974)CrossRefGoogle Scholar
  26. 26.
    Villagrán-Muniz, M., Sobral, H., Navarro-González, R.: Shock and thermal wave study of laser-induced plasmas in air by the probe beam deflection technique. Meas. Sci. Technol. 14(5), 614 (2003)CrossRefGoogle Scholar
  27. 27.
    Boden, F., Delfs, J.: Development of a laser-based sound source. Inter-Noise, Honolulu, Hawaii, USA (2006)Google Scholar
  28. 28.
    Phuoc, T.X.: Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases. Opt. Commun. 175(4), 419–423 (2000)CrossRefGoogle Scholar
  29. 29.
    Saleh, B., Teich, M.: Fundamental of Photonics, vol. 3, pp. 80–107. Wiley, New York (1991)CrossRefGoogle Scholar
  30. 30.
    Delfs, J.W., Ewert, R., Bauer, M., Dierke, J.: Numerical simulation of aerodynamic noise with PIANO. Institute of Aerodynamics and Flow Technology, Department of Technical Acoustics, DLR, Lilienthalplatz 7, 38108 Braunschweig, Germany, 9 (2015)Google Scholar
  31. 31.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. European Conference on Computational Fluid Dynamics, TU Delft (2006)Google Scholar
  32. 32.
    Delfs, J., Ewert, R.: Numerical simulation of aerodynamic noise with PIANO. Tech. Rep, DLR, Braunschweig (2015)Google Scholar
  33. 33.
    Burton, A.J., Miller, G.F.: The application of integral equation methods to the numerical solution of some exterior boundary value problems. Proc. R. Soc. Lond. A 323, 201–210 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kirkup, S.M.: BEMHELM: BEM for Helmholtz Problems. http://www.boundary-element-method.com/helmholtz/manual/index.htm (1998)
  35. 35.
    Schöberl, J.: NETGEN—automatic mesh generator. Johannes Kepler University Linz, Austria. http://www.hpfem.jku.at/netgen
  36. 36.
    Lummer, M.: Installation effects—numerical investigation. In: Aircraft Noise Generation and Assessment. CEAS Aeronaut. J. (submitted)Google Scholar
  37. 37.
    Geuzaine, Christophe, Remacle, Jean-François: Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)CologneGermany

Personalised recommendations