Advertisement

Aircraft noise generation and assessment: exploitation of hybrid anechoic wind tunnels for aeroacoustic and aerodynamic measurements

  • K. BrownEmail author
  • W. Devenport
  • A. Borgoltz
Original Paper
  • 1 Downloads

Abstract

The last 10 years have seen the establishment of the hybrid anechoic wind tunnel as a significant tool for experimental aeroacoustics research. The hybrid anechoic wind tunnel features a test section which is effectively closed in the aerodynamic sense but open in the acoustic sense, this unique behavior being achieved by stretching fabric of high strength-to-weight ratio (such as Kevlar) over windows in the test section walls which open to anechoic chambers. The hybrid anechoic arrangement offers a number of advantages over the traditional open-jet test section, including low interference corrections that allow for testing of large models at higher Reynolds numbers—advantages well suited to aircraft noise source research. In this article, we review recent applications of hybrid anechoic tunnels for aircraft noise source studies. We discuss the established practice for acoustic and aerodynamic correction of measurements performed in these facilities, and assess some of the latest findings in aerodynamic behavior of hybrid anechoic tests sections.

Keywords

Experimental aeroacoustics Hybrid anechoic wind tunnel Kevlar wall Fabric porosity Boundary correction Panel method 

Notes

Acknowledgements

The authors would like to thank Patricio Ravetta, Nathan Alexander and Stewart Glegg for their many contributions to the research reviewed in this paper. The support of the Office of Naval Research for the open rotor experiments under Grant numbers N00014-14-1-0141 and N00014-16-1-2395 is gratefully acknowledged.

References

  1. 1.
    Devenport, W.J., Burdisso, R.A., Borgoltz, A., Ravetta, P.A., Barone, M.F., Brown, K.A., Morton, M.A.: The kevlar-walled anechoic wind tunnel. J. Sound Vib. 332(17), 3971–3991 (2013).  https://doi.org/10.1016/j.jsv.2013.02.043 CrossRefGoogle Scholar
  2. 2.
    Glegg, S., Devenport, W.: The Aero and Hydroacoustics of Low Mach Number Flows: Fundamentals, Analysis and Measurements. Elsevier Science, Amsterdam (2017)Google Scholar
  3. 3.
    Moreau, S., Henner, M., Iaccarino, G., Wang, M., Roger, M.: Analysis of flow conditions in freejet experiments for studying airfoil self-noise. AIAA J. 41(10), 1895–1905 (2003).  https://doi.org/10.2514/2.1905 CrossRefGoogle Scholar
  4. 4.
    Brown, K.A.: Understanding and exploiting wind tunnels with porous flexible walls for aerodynamic measurement. PhD thesis, Virginia Tech (2016). http://hdl.handle.net/10919/73363
  5. 5.
    Ito, T., Ura, H., Nakakita, K., Yokokawa, Y., Ng, W., Burdisso, R., Iwasaki, A., Fujita, T., Ando, N., Shimada, N., et al.: Aerodynamic/aeroacoustic testing in anechoic closed test sections of low-speed wind tunnels. In: 16th AIAA/CEAS Aeroacoustics Conference (AIAA 2010-3750) (2010).  https://doi.org/10.2514/6.2010-3750
  6. 6.
    Alexander, W.N., Devenport, W., Glegg, S., Jaworski, J.W., Daly, C., Clark, I.A., Peake, N.: Bioinspired trailing-edge noise control. AIAA J. 55(3), 740–754 (2017).  https://doi.org/10.2514/1.J055243 CrossRefGoogle Scholar
  7. 7.
    Murray, H.H., Devenport, W.J., Alexander, W.N., Glegg, S.A.L., Wisda, D.: Aeroacoustics of a rotor ingesting a planar boundary layer at high thrust. J. Fluid Mech. 850, 212–245 (2018).  https://doi.org/10.1017/jfm.2018.438 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Awasthi, M., Devenport, W., Alexander, W.N., Glegg, S.: Aeroacoustics of rounded forward-facing steps: far-field behavior. AIAA J. (2019).  https://doi.org/10.2514/1.J057086 Google Scholar
  9. 9.
    Devenport, W., Bak, C., Brown, K., Borgoltz, A., Osterlund, J., Davidsson, P.: Design and operation of hybrid aeroacoustic wind tunnels. In: Design and Operation of Aeroacoustic Wind Tunnel Tests for Group and Air Transport. NATO STO-EN-AVT-287 (2017).  https://doi.org/10.14339/STO-EN-AVT-287
  10. 10.
    Remillieux, M.C., Camargo, H.E., Ravetta, P.A., Burdisso, R.A., Ng, W.F.: Novel kevlar-walled wind tunnel for aeroacoustic testing of a landing gear. AIAA J. 46(7), 1631–1639 (2008).  https://doi.org/10.2514/1.33082 CrossRefGoogle Scholar
  11. 11.
    Remillieux, M., Camargo, H., Ravetta, P., Burdisso, R., Ng, W.: Noise reduction of a model-scale landing gear measured in the Virginia Tech aeroacoustic wind tunnel. In: 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), p. 2818 (2008).  https://doi.org/10.2514/6.2008-2818
  12. 12.
    Ravetta, P.A., Khorrami, M.R., Burdisso, R.: Acoustic measurements of a large civil transport main landing gear model. In: 22nd AIAA/CEAS Aeroacoustics Conference, p. 2901 (2016).  https://doi.org/10.2514/6.2016-2901
  13. 13.
    Ringshia, A., Ravetta, P., Ng, W., Burdisso, R.: Aerodynamic measurements of the 777 main landing gear model. In: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), p. 2625 (2006).  https://doi.org/10.2514/6.2006-2625
  14. 14.
    Ravetta, P., Burdisso, R., Ng, W.: Wind tunnel aeroacoustic measurements of a 26%-scale 777 main landing gear. In: 10th AIAA/CEAS Aeroacoustics Conference, p. 2885 (2004).  https://doi.org/10.2514/6.2004-2885
  15. 15.
    Ravetta, P., Burdisso, R., Ng, W.: Noise control of landing gears using elastic membrane-based fairings. In: 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), p. 3466 (2007).  https://doi.org/10.2514/6.2007-3466
  16. 16.
    Ravetta, P., Burdisso, R., Ng, W., Khorrami, M., Stoker, R.: Screening of potential noise control devices at Virginia tech for QTD II flight test. In: 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), p. 3455 (2007).  https://doi.org/10.2514/6.2007-3455
  17. 17.
    Khorrami, M.R., Humphreys, W.M., Lockard, D.P., Ravetta, P.A.: Aeroacoustic evaluation of flap and landing gear noise reduction concepts. In: 20th AIAA/CEAS Aeroacoustics Conference, p. 2478 (2014).  https://doi.org/10.2514/6.2014-2478
  18. 18.
    Underbrink, J.R.: Pletharrays for aeroacoustic phased array applications. In: 21st AIAA/CEAS Aeroacoustics Conference, p. 2978 (2015).  https://doi.org/10.2514/6.2015-2978
  19. 19.
    Yamamoto, K., Ura, H., Yokokawa, Y., Imamura, T., Nakakita, K., Camargo, H., Remillieux, M., Boor, Z., Burdisso, A.R., Ng, F.W. et al.: Aeroacoustic testing of a high-lift device model in the virginia tech anechoic wind tunnel. In: Proceedings of 13th CEAS-ASC Workshop & 4th Scientific Workshop of X3–Noise (2009).  https://doi.org/10.13140/2.1.1975.0726
  20. 20.
    Brown, K., Devenport, W., Borgoltz, A., Ura, H., Yamamoto, K.: Towards interference corrections for three-dimensional models in Kevlar-walled anechoic test sections. 52nd AIAA Aerospace Sciences Meeting (AIAA 2014-0618) (2014).  https://doi.org/10.2514/6.2014-0618
  21. 21.
    Yokokawa, Y., Murayama, M., Ito, Y., Ura, H., Kwak, D.-Y., Kobayashi, H., Shindo, S., Yamamoto, K.: Noise generation characteristics of a high-lift swept and tapered wing model. In: 19th AIAA/CEAS Aeroacoustics Conference, p. 2062 (2013).  https://doi.org/10.2514/6.2013-2062
  22. 22.
    Murayama, M., Yokokawa, Y., Ito, Y., Yamamoto, K., Takaishi, T., Ura, H.: Study on noise generation from slat tracks using a high-lift wing model. In: 21st AIAA/CEAS Aeroacoustics Conference, p. 3141 (2015).  https://doi.org/10.2514/6.2015-3141
  23. 23.
    Murayama, M., Yokokawa, Y., Ito, Y., Yamamoto, K., Takaishi, T., Ura, H., Hirai, T.: Study on change of noise generation from slat track shape. In: 22nd AIAA/CEAS Aeroacoustics Conference, p. 2959 (2016).  https://doi.org/10.2514/6.2016-2959
  24. 24.
    Pascioni, K.A., Cattafesta, L.N.: Aeroacoustic measurements of leading-edge slat noise. In: 22nd AIAA/CEAS Aeroacoustics Conference, p. 2960 (2016).  https://doi.org/10.2514/6.2016-2960
  25. 25.
    Moreau, D.J., Doolan, C.J., Nathan Alexander, W., Meyers, T.W., Devenport, W.J.: Wall-mounted finite airfoil-noise production and prediction. AIAA Journal, pp. 1637–1651 (2016).  https://doi.org/10.2514/1.J054493
  26. 26.
    Moreau, D.J., Doolan, C.J.: Tonal noise production from a wall-mounted finite airfoil. J. Sound Vib. 363, 199–224 (2016).  https://doi.org/10.1016/j.jsv.2015.11.021 CrossRefGoogle Scholar
  27. 27.
    Murray, H.: Turbulence and sound generated by a rotor operating near a wall. Master’s thesis, Virginia Tech (2016). http://hdl.handle.net/10919/71332
  28. 28.
    Alexander, W.N., Devenport, W.J., Wisda, D., Morton, M.A., Glegg, S.A.: Sound radiated from a rotor and its relation to rotating frame measurements of ingested turbulence. In: 20th AIAA/CEAS Aeroacoustics Conference, p. 2746 (2014).  https://doi.org/10.2514/6.2014-2746
  29. 29.
    Wisda, D.M., Murray, H., Alexander, W.N., Nelson, M., Devenport, W.J., Glegg, S.A.: Flow distortion and noise produced by a thrusting rotor ingesting a planar turbulent boundary layer. In: 21st AIAA/CEAS Aeroacoustics Conference, p. 2981 (2015).  https://doi.org/10.2514/6.2015-2981
  30. 30.
    Murray, H., Wisda, D.M., Alexander, W.N., Nelson, M., Devenport, W.J., Glegg, S.A.: Sound and distortion produced by a braking rotor operating in a planar boundary layer with application to wind turbines. In: 21st AIAA/CEAS Aeroacoustics Conference, p. 2682 (2015).  https://doi.org/10.2514/6.2015-2682
  31. 31.
    Alexander, N., Devenport, W., Morton, M.A., Glegg, S.A.L.: Noise from a rotor ingesting a planar turbulent boundary layer. In: Proc. of 19th AIAA/CEAS Aeroacoustics Conference (AIAA 2013-2285) (2013).  https://doi.org/10.2514/6.2013-2285
  32. 32.
    Envia, E., Coupland, J.: AA-39 panel session: fan broadband noise prediction. In: 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia, 2014. http://web1.oai.org/FBNWorkshop.nsf/Index
  33. 33.
    Alexander, W.N., Molinaro, N.J., Hickling, C., Murray, H., Devenport, W.J., Glegg, S.A.: Phased array measurements of a rotor ingesting a turbulent shear flow. In: 22nd AIAA/CEAS Aeroacoustics Conference, p. 2994 (2016).  https://doi.org/10.2514/6.2016-2994
  34. 34.
    Molinaro, N.J., Balantrapu, A.N., Hickling, C., Alexander, W.N., Devenport, W.J.: The ingestion of wake turbulence into an open rotor. In: 24th AIAA/CEAS Aeroacoustics Conference, p. 3868 (2017).  https://doi.org/10.2514/6.2017-3868
  35. 35.
    Hickling, C., Alexander, W.N., Molinaro, N.J., Devenport, W.J., Glegg, S.A.: Efficient beamforming techniques for investigating turbulence ingestion noise with an inhomogeneous inflow. In: 24th AIAA/CEAS Aeroacoustics Conference, p. 4179 (2017).  https://doi.org/10.2514/6.2017-4179
  36. 36.
    Bahr, C.J., Hutcheson, F.V., Stead, D.J.: Assessment of unsteady propagation characteristics and corrections in aeroacoustic wind tunnels using an acoustic pulse. In: 2018 AIAA/CEAS Aeroacoustics Conference (AIAA 2018-3118), p. 3118 (2018).  https://doi.org/10.2514/6.2018-3118
  37. 37.
    Alexander, W.N., Devenport, W.J.: Noise from boundary layer flow over fabric covered perforate panels. In: 20th AIAA/CEAS Aeroacoustics Conference, p. 2908 (2014).  https://doi.org/10.2514/6.2014-2908
  38. 38.
    Remillieux, M.C., Crede, E.D., Camargo, H.E., Burdisso, R.A., Devenport, W.J., Rasnick, M., Van Seeters, P., Chou, A.: Calibration and demonstration of the new Virginia Tech anechoic wind tunnel. In: 14th AIAA/CEAS Aeroacoustics Conference (AIAA 2008-2911) (2008).  https://doi.org/10.2514/6.2008-2911
  39. 39.
    Amiet, R.: Correction of open jet wind tunnel measurements for shear layer refraction. In: 2nd Aeroacoustics Conference, p. 532 (1975).  https://doi.org/10.2514/6.1975-532
  40. 40.
    Amiet, R.K.: Refraction of sound by a shear layer. J. Sound Vib. 58(4), 467–482 (1978).  https://doi.org/10.1016/0022-460X(78)90353-X CrossRefzbMATHGoogle Scholar
  41. 41.
    Brown, K., Brown, J., Patil, M., Devenport, W.: Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data. Exp. Fluids 59(2), 25 (2018).  https://doi.org/10.1007/s00348-017-2477-9 CrossRefGoogle Scholar
  42. 42.
    Allen, J.H., Vincenti, W.G.: Wall interference in a two-dimensional-flow wind tunnel, with consideration of the effect of compressibility. Technical report (1944). NACA-TR-782Google Scholar
  43. 43.
    Herriot, J.G.: Blockage corrections for three-dimensional-flow closed-throat wind tunnels, with consideration of the effect of compressibility (1947). NACA-RM-A7B28Google Scholar
  44. 44.
    Hoerner, S.F.: Aerodynamic properties of screens and fabrics. Text. Res. J. 22(4), 274–280 (1952).  https://doi.org/10.1177/004051755202200405 CrossRefGoogle Scholar
  45. 45.
    Devenport, W.J., Burdisso, R.A., Borgoltz, A., Ravetta, P., Barone, M.F.: Aerodynamic and acoustic corrections for a Kevlar-walled anechoic wind tunnel. In: 16th AIAA/CEAS Aeroacoustics Conference (AIAA 2010-3749) (2010).  https://doi.org/10.2514/6.2010-3749
  46. 46.
    Ivanov, A.I.: An experimental study of gas flow near the perforated walls of a transonic wind tunnel. Fluid Mech. Sov. Res. 17(4), 31–37 (1988)Google Scholar
  47. 47.
    Glazkov, S.A., Gorbushin, A.R., Ivanov, A.I., Semenov, A.V.: Recent experience in improving the accuracy of wall interference corrections in TsAGI T-128 wind tunnel. Prog. Aerosp. Sci. 37(3), 263–298 (2001).  https://doi.org/10.1016/S0376-0421(01)00007-0 CrossRefGoogle Scholar
  48. 48.
    Chan, Y.Y.: Wall boundary-layer effects in transonic wind tunnels. In: AGARD Conference Proceedings No. 335. NATO (1982)Google Scholar
  49. 49.
    Crites, R., Rueger, M.: Modeling the ventilated wind tunnel wall. In: 30th AIAA Aerospace Sciences Meeting and Exhibit (AIAA 1992-0035) (1992).  https://doi.org/10.2514/6.1992-35
  50. 50.
    Natarajan, K.: Air permeability of elastomeric fabrics as a function of uniaxial tensile strain. Master’s thesis, North Carolina State University (2003). http://repository.lib.ncsu.edu/ir/handle/1840.16/1251

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.Virginia TechBlacksburgUSA

Personalised recommendations