Advertisement

Novel liner concepts

  • F. BakeEmail author
  • K. Knobloch
Original Paper
  • 1 Downloads

Abstract

Modern, low-emission aero-engine concepts, such as, for instance, Ultrahigh-Bypass Ratio (UHBR) designs, claim higher demands on the damping performance of acoustic wall treatment, called liner, installed in the engine. New liner concepts are needed providing a more broadband damping efficiency ranging explicitly to the low-frequency range. However, space and weight constrains are still also one of the crucial criteria which need to be fulfilled by the liner structure. To overcome this challenge, two novel liner concepts are presented here. One concept, the hybrid ZML, combines the classical Single-Degree-of-Freedom (SDOF) liner with a Zero-Massflow-Liner (ZML) principle. The other one, the FlexiS concept, takes advantage of the intrinsic material damping of flexible walls within the liner structure. A proof of concepts study of both novel concepts is provided highlighting the enhanced damping performance with respect to broadband capacity and low-frequency damping.

Keywords

Aeroacoustics Acoustic damping Liner Wall treatment Novel liner concepts 

Notes

Acknowledgements

The authors gratefully acknowledge the valuable contributions of Anita Schulz, Albert Bauer and the LAKS consortium as well as the fruitful discussions with Christoph Richter from Rolls-Royce Deutschland LTD & Co KG. The research leading to these results has received funding from the German Federal Ministry for Economic Affairs and Energy (Luftfahrtforschungsprogramm V) within the framework of the LIST (‘Das Leise InStallierte Triebwerk’) project under grant agreement no. 20T1307B and within the framework of LAKS (‘Lärmabsorbierende Kunststoffstrukturen’) project under grant agreement no. 20E1502A.

References

  1. 1.
  2. 2.
    Blokhintsev, D.I.: Acoustics of a nonhomogeneous moving medium. NACA Technical Memorandum 1399 (1956). Originally published 1946 in russian languageGoogle Scholar
  3. 3.
    Brandes, M.: Optimierung eines Meßvervahrens zur Bestimmung von akustischen Parametern im durchströmten Rohr. Diploma thesis, Universität Göttingen (1992)Google Scholar
  4. 4.
    Busse-Gerstengarbe, S., Bake, F., Enghardt, L., Jones, M.G.: Comparative study of impedance eduction methods, part 1: Dlr tests and methodology. In: 19th AIAA/CEAS Aeroacoustics Conference, 2013–2124. Berlin, Germany (2013)Google Scholar
  5. 5.
    Chung, J.Y.: Rejection of flow noise using coherence function method. J. Acoust. Soc. Am. 6(2), 388–395 (1977)CrossRefGoogle Scholar
  6. 6.
    Cremer, L.: Theorie der Luftschall-Dämpfung im Rechteckkanal mit schluckender Wand und das sich dabei ergebende höchste Dämpfungsmaß. Acoustica 3(2), 249–263 (1953)Google Scholar
  7. 7.
    Drevon, E.: Measurement methods and devices applied to a380 nacelle double degree-of-freedom acoustic liner development. In: 10th AIAA/CEAS Aeroacoustics Conference, AIAA 2004–2907 (2004)Google Scholar
  8. 8.
    Enghardt, L.: Bestimmung akustischer Streufaktoren im durchströmten Rohr-Optimierung von Mikrofonanordnung und Meprozedur. Diplomarbeit, Universität Göttingen, Göttingen (1992)Google Scholar
  9. 9.
    Fischer, A., Bake, F., Bassetti, A.: The acoustic-particle velocity in the vicinity of a liner: a piv-caa comparison. In: 19th AIAA/CEAS Aeroacoustics conference, 2013–2055. Berlin, Germany (2013)Google Scholar
  10. 10.
    Jones, M., Nark, D., Watson, W., Howerton, B.: Variable-depth liner evaluation using two nasa flow ducts. In: 23rd AIAA/CEAS Aeroacoustics Conference, 2017–3022. Denver, Colorado, USA (2017)Google Scholar
  11. 11.
    Jones, M., Watson, W., Nark, D., Howerton, B.: Evaluation of variable-depth liner configurations for increased broadband noise reduction. In: 21st AIAA/CEAS Aeroacoustics Conference, 2015–2697. Dallas, Texas, USA (2015)Google Scholar
  12. 12.
    Jones, M., Watson, W., Nark, D., Schiller, N., Born, J.: Experimental investigation of sound field decomposition with higher order modes in rectangular ducts. In: 22nd AIAA/CEAS Aeroacoustics Conference, 2016–2783. Lyon, France (2016)Google Scholar
  13. 13.
    Jones, M.G., Parrott, T.L., Watson, W.R.: Comparison of acoustic impedance eduction techniques for locally-reacting liners. In: 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, AIAA 2003-3306. Hilton Head, South Carolina (2003)Google Scholar
  14. 14.
    Lahiri, C., Pardowitz, B., Bake, F., Enghardt, L.: The application of an aeroacoustic actuator in a zero mass flow liner for acoustic damping. In: 17th AIAA/CEAS Aeroacoustics Conference, 2011–2725. Portland, USA (2011)Google Scholar
  15. 15.
    Lahiri, C., Pardowitz, B., Bake, F., Röhle, I., Enghardt, L.: Excitation of a zero mass flow liner for acoustic damping. AIAA J. 49(3), 513–519 (2011)CrossRefGoogle Scholar
  16. 16.
    Lahiri, C., Sadig, S., Gerendas, M., Enghardt, L., Bake, F.: Establishment of a high quality database for the modelling of perforated liners. J. Eng. Gas Turbines Power 133(9), 091,503–1 – 091,503–9 (2011)CrossRefGoogle Scholar
  17. 17.
    Morfey, C.L.: Acoustic energy in non-uniform flows. J. Sound Vib. 14(2), 159–170 (1971)CrossRefzbMATHGoogle Scholar
  18. 18.
    Murray, P.B., Ferrante, P., Scofano, A.: Manufacturing process and boundary layer influences on perforate liner impedance. In: 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference), AIAA 2005–2849. Monterey, California (2005)Google Scholar
  19. 19.
    Redmann, D., Pongratz, R., Zillmann, J.: Aeroacoustic liner applications of the broadband special acoustic absorber concept. In: 19th AIAA/CEAS Aeroacoustics Conference, 2013–2176. Berlin, Germany (2013)Google Scholar
  20. 20.
    Rienstra, S., Hirschberg, A.: An Introduction to Acoustics. Eindhoven University of Technology press (2008). Report IWDE 92–06Google Scholar
  21. 21.
    Ronneberger, D.: Genaue Messung der Schalldämpfung und der Phasengeschwindigkeit in durchströmten Rohren im Hinblick auf die Wechselwirkung zwischen Schall und Turbulenz. Habilitation thesis, Universität Göttingen (1975)Google Scholar
  22. 22.
    Schulz, A., Bake, F., Enghardt, L., Ronneberger, D.: Impedance eduction of acoustic liners based on four different levels of physical modeling. In: 22nd AIAA/CEAS Aeroacoustics Conference, 2016–2726. Lyon, France (2016)Google Scholar
  23. 23.
    Smith, M.J.T.: Aircraft noise. Cambridge aerospace series. Cambridge University Press, Cambridge (1989)Google Scholar
  24. 24.
    Tester, B.J.: The propagation and attenuation of sound in lined ducts containing uniform or plug flow. J. Sound Vib. 28(2), 151–203 (1973)CrossRefzbMATHGoogle Scholar
  25. 25.
    Yu, J., Chien, E.: Folding cavity acoustic liner for combustion noise reduction. In: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), AIAA 2006-2681. Cambridge, USA (2006)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.Department of Engine Acoustics, Institute of Propulsion TechnologyGerman Aerospace Center (DLR)BerlinGermany

Personalised recommendations