Advertisement

New concepts for cutting, surface treatment and forming of aluminium sheets used for fibre-metal laminate manufacturing

  • Stefan Dieckhoff
  • Jens Standfuß
  • József-Sebastian Pap
  • Annett Klotzbach
  • Frieder Zimmermann
  • Malte Burchardt
  • Christoph Regula
  • Ralph Wilken
  • Hilmar Apmann
  • Kai Fortkamp
  • Jens Hackius
Original Paper
  • 8 Downloads

Abstract

With regard to the automated production of fibre-metal laminates (FML), new technologies for the treatment of thin aluminium sheets (AA2024, AA5028) are developed. This includes laser cutting, creep forming and surface treatment by means of laser and plasma techniques as well as the use of a novel anodizing tape for local applications. The surface treatment techniques are used for surface pretreatment and cut edge protection of aluminium sheets. The results concerning cutting speed, creep forming parameters, corrosion protection performance and adhesion properties allow a first evaluation of the feasibility for the use of these novel processes with regard to the resulting material properties and the associated manufacturing aspects in industrial FML production.

Keywords

FML Laser cutting Creep forming Surface treatment 

Notes

Acknowledgements

This study was funded by German Federal Ministry for Economics and Energy within the frame of aviation research program V–II, project “NFM-GLARE”, ref. no. 20W1517D. The support is gratefully acknowledged.

References

  1. 1.
    Project, “A.U.T.O.G.L.A.R.E.”, V-2, L.U.F.O.: (2015–2018), subproject “NFM-Glare” (Ref. No. 20W1517D)Google Scholar
  2. 2.
    ARiveiro, F., Quintero, F., Lusquiños, J., Pou: and M. Pérez-Amor: laser cutting of 2024-T3 aeronautic aluminium alloy. J.Laser Appl. 20, 230 (2008)CrossRefGoogle Scholar
  3. 3.
    Lütke, M., Mahrle, A., Himmer, T., Morgenthal, L., Beyer, E.: Remote-cutting—a smart solution using the advantages of high brightness lasers”; ICALEO 2008. In: International Congress on Applications of Lasers and Electro-Optics, 27Google Scholar
  4. 4.
    DE102012000508 A1: (18.07.2013), BOB Engineering GmbH Automation und Produktentwicklung. Pr.: DE 102012000508.3 13.01.2012.—“Verfahren zur Herstellung eines GLARE-Bauteils”Google Scholar
  5. 5.
    Jambu, S.: Viscoplastic flow behaviour of a new-grade AlMgSc alloy: applications for creep forming. Dissertation, Université de Rennes: 2001Google Scholar
  6. 6.
    Velterop, L.: Phosphoric sulphuric acid anodising: an alternative for chromic acid anodizingin aerospace applications?, National Aerospace Laboratory Report, Amsterdam, (2003), Ref. NLR-TP-2003-210Google Scholar
  7. 7.
    Borgonja, B., Ijpma, M.S.: Corrosion. In: W.G.J. Harrt (ed.): Fibre metal laminates an introduction, pp. 427–439. Netherlands, Kluwer Academic Publishers (2001)CrossRefGoogle Scholar
  8. 8.
    Park, S.Y., Choi, W.J., Choi, H.S., Kwon, H., Kim, S.H.: Recent trends in surface treatment technologies for airframe adhesive bonding processing: a review (1995–2008). J. Adhes. 86(2), 192–221 (2010)CrossRefGoogle Scholar
  9. 9.
    Schiefer, T. et.al.: Large area surface structuring by direct laser interference patter-ning for adhesive bonding applications. J. Adhes. Soc. Jpn. 51 S1, 223–224 (2015)CrossRefGoogle Scholar
  10. 10.
    Pap, J.-S. et al.: Adhesively bonded structures with hybrid yarn textile-reinforced plastics. J. Adhes. Soc. Jpn. 51, 229–230 (2015)CrossRefGoogle Scholar
  11. 11.
    AKlotzbach, M., Langer, R., Pautzsch, J., Standfuß, E., Beyer: Thermal direct joining of metal to fiber reinforced thermoplastic components. J. Laser Appl. 29, 22421 (2017)CrossRefGoogle Scholar
  12. 12.
    AHeckert, M.F., Zaeh: Laser surface pre-treatment of aluminium for hybrid joints with glass fibre reinforced thermoplastics. Phys. Proc. 56, 1171–1181 (2014)CrossRefGoogle Scholar
  13. 13.
    Zhang, Z., Shan, J., Tan, X., Zhang, J., Improvement of the laser joining of CFRP and aluminium via laser pre-treatment. Int. J. Adv. Manuf. Technol. 90, 3465–3472 (2017)CrossRefGoogle Scholar
  14. 14.
    Amend, P., Häfner, T., Gränitz, M., Roth, S., Schmidt, M., Effect of ultrashort pulse laser structuring of stainless steel on laser-based heat conduction joining of polyamide steel hybrids. Phys Procedia 83, 1130–1136 (2016)CrossRefGoogle Scholar
  15. 15.
    Annual, R.: Fraunhofer IWS Dresden. Dresden. (2017)Google Scholar
  16. 16.
    Rechner, R.: Laseroberflächenvorbehandlung von Aluminium zur Optimierung der Oxidschichteigen-schaften für das strukturelle Kleben, PhD thesis TU Dresden: (2011)Google Scholar
  17. 17.
    Wilken, R.: Korrosionsschutz von Al-Legierungen durch AD-Plasmabeschichtungen, DFO-Tagung Leichtmetallanwendungen - Entwicklungen in der Oberflächentechnik in Theorie und Praxis, 20.-21. 03.2007, Neuss, Tagungsband ISBN 978-3-89943-066-2, p. 197–207Google Scholar
  18. 18.
    Koinuma, H., Ohkubo, H., Hashimoto, T., Inomata, K., Shiraishi, T., Miyanaga, A., Hayashi, S.: Appl. Phys. Lett. 60, 816–817 (1992)CrossRefGoogle Scholar
  19. 19.
    ASchütze, J.Y., Jeong, S.E., Babayan, J., Park, G.S., Selwyn, R.F., Hicks: IEEE Trans. Plasma Sci. 26, 1685–1694 (1998)CrossRefGoogle Scholar
  20. 20.
    Laroussi, M., Akan, T.: Plasma Process. Polym. 4, 777–788 (2007)CrossRefGoogle Scholar
  21. 21.
    Laimer, J., Störi, H.: Plasma Process. Polym. 4, 266–274 (2007)CrossRefGoogle Scholar
  22. 22.
    Inomata, K., Ha, H., Chaudhary, K.A., Koinuma, H.: Appl. Phys.Lett. 64, 46–48 (1994)CrossRefGoogle Scholar
  23. 23.
    Babayan, S.E., Jeong, J.Y., Tu, V.J., Park, J., Selwyn, G.S., Hicks, R.F.: Plasma Sour. Sci. Technol. 7, 286–288 (1998)CrossRefGoogle Scholar
  24. 24.
    Kasih, T.P., Kuroda, S., Kubota, H.: Chem. Vap. Deposition 13, 169–175 (2007)CrossRefGoogle Scholar
  25. 25.
    Benedikt, J., Raballand, V., Yanguas-Gil, A., Focke, K., von Keudell, A.: Plasma Phys. Control. Fusion 49, B419–B427 (2007)CrossRefGoogle Scholar
  26. 26.
    Han, M.H., Noh, J.H., Lee, T.J., Choi, J.H., Park, K.W., Hwang, H.S., Song, K.M., Baik, H.K.: Plasma Process. Polym. 5, 861–866 (2008)CrossRefGoogle Scholar
  27. 27.
    Hopfe, V., Sheel, D.W.: Plasma Process. Polym. 4, 253–265 (2007)CrossRefGoogle Scholar
  28. 28.
    [A11] X. Zhu, F., Arefi-Khonsari, C., Petit-Etienne, M., Tatoulian, Plasma Process. Polym. 2 (2005) 407–413CrossRefGoogle Scholar
  29. 29.
    AChurpita, Z., Hubicka, M., Cada, D., Chvostova, L., Soukup, L., Jastrabik, P., Ptacek, Surf. Coat. Technol. 1059, 174–175 (2003)Google Scholar
  30. 30.
    Schäfer, J., Foest, R., Quade, A., Ohl, A., Weltmann:, K.D.: J. Phys. D:Appl. Phys. 41, 194010 S1–S9 (2008)Google Scholar
  31. 31.
    Noeske, M., Degenhardt, J., Strudthoff, S., Lommatzsch, U.: Int. J. Adhes. Adhes. 24, 171–177 (2004)CrossRefGoogle Scholar
  32. 32.
    Lommatzsch, U., Ihde, J.: Plasma Proces Polym. 6, 642–648 (2009)CrossRefGoogle Scholar
  33. 33.
    Regula, C., Ihde, J., Lommatzsch, U., Wilken, R.: Surf. Coat. Technol. 205, S355–S358 (2011)CrossRefGoogle Scholar
  34. 34.
    Pulpytel, J., Kumar, V., Peng, P.: Deposition of Organosilicon coatings by a non-equilibrium atmospheric pressure plasma jet: design, analysis and macroscopic scaling law of the process. Plasma Process. Polym. 8, 664–675 (2011)CrossRefGoogle Scholar
  35. 35.
    http://www.dalistick.com, Accessing date: 03.07.2018
  36. 36.
    Ong, C.-L., Shu, W.-Y., Shen, S.B.: The evaluation of non-tank surface treatments for aluminium bonding repairs. Int. J. Adhes. Adhes. 12(2), 79–84 (1992)CrossRefGoogle Scholar
  37. 37.
    Burchardt, M., Dieckhoff, S., Hartwig, A., Kleemeier, M., Teczyk, K., Vulliet, P., Fangmeier, A.: Removable anodizing agent, in particular for local anodic oxidation of metal surfaces. EP 2 689 052 B1, 22.03.2012Google Scholar
  38. 38.
    Berndt, L., Hartwig, A., Kleemeier, M., Krieger, A., Thiel, K., Burchardt, M.: Functional pressure-sensitive adhesive tapes for local anodization of aluminium surfaces. Surf. Interface Anal. 48, 926–933 (2016)CrossRefGoogle Scholar
  39. 39.
    Zimmermann, F., Brosius, A., Beyer, E., Standfuß, J., Jahn, A.: Formability of Spherical and Large Aluminium Sheets. In: Proceedings of the 20th International ESAFORM Conference on Material Forming, 2017, Paper 132Google Scholar
  40. 40.
    Fishkis, F., Lin, J.C.: Formation of a subsurface layer in a metalworking process. Wear 206, 156–170 (1997)CrossRefGoogle Scholar
  41. 41.
    Ambata, R., et al.: Electrochemical behaviour of the active surface layer on rolled aluminium alloy sheet. J. Electrochem. Soc. 151(2), B53–B58 (2004)CrossRefGoogle Scholar
  42. 42.
    Jambu, S., Lenczowski, B., Rauh, R.: Creep Forming of AlMgSc Alloys for Aeronautic and Space Applications. IN: Proceedings of the 23rd International Congress of the Aeronautical Sciences, 2002, Paper 632Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2018

Authors and Affiliations

  • Stefan Dieckhoff
    • 1
  • Jens Standfuß
    • 2
  • József-Sebastian Pap
    • 2
  • Annett Klotzbach
    • 2
  • Frieder Zimmermann
    • 2
  • Malte Burchardt
    • 1
  • Christoph Regula
    • 1
  • Ralph Wilken
    • 1
  • Hilmar Apmann
    • 3
  • Kai Fortkamp
    • 3
  • Jens Hackius
    • 4
  1. 1.Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)BremenGermany
  2. 2.Fraunhofer Institute for Material and Beam Technology (IWS)DresdenGermany
  3. 3.Premium Aerotec GmbHNordenhamGermany
  4. 4.Airbus Operations GmbHBremenGermany

Personalised recommendations