Advertisement

Workload reduction through steering wheel control for rotorcraft

  • B. I. SchuchardtEmail author
Original Paper
  • 12 Downloads

Abstract

This paper reports on the development and investigation of a steering wheel control concept for highly augmented rotorcraft with fly-by-wire control. The main idea is to use a steering wheel as primary inceptor instead of the conventional centre stick. The existing yaw pedals are reprogrammed to function similar to the accelerator and brake pedals in a car. The height can be controlled either via a conventional collective lever or via switches behind the wheel. An additional eight-way switch in the centre of the wheel is used for horizontal precision manoeuvres in the low-speed regime. A fixed-base simulator study was performed to compare conventional and steering wheel control with respect to pilot workload. Three different user groups participated in the study, namely helicopter pilots, car drivers and test candidates with no experience in either driving or flying. The study showed that, especially for the car drivers, the perceived workload could be reduced when flying a helicopter with a steering wheel.

Keywords

Steering wheel Workload measurement Rotorcraft Helicopter 

Abbreviations

AC

Attitude command

AcC

Acceleration command

ACT/FHS

Active control technology flying helicopter simulator

ATPL(H)

Air traffic pilot licence (helicopter)

AVES

Air vehicle simulator

CPL(H)

Commercial pilot licence (helicopter)

DLR

German aerospace center

GLM

General linear model

NASA

National Aeronautics and Space Administration

PPL(H)

Private pilot licence (helicopter)

RC

Rate command

TC

Turn coordination

TLX

Task Load Index

TRC

Translational rate command

βC

Sideslip angle command

γC

Flight path angle command

List of symbols

df

Degree of freedom

F

Test size for analysis of variance

M

Mean

p

Level of significance

SD

Standard deviation

T

Test size for T test

α

Error probability

ƞ2

Effect size

Notes

Acknowledgements

This research activity has received funding from the European Commission’s Seventh Framework Programme for the project myCopter—Enabling Technologies for Personal Aerial Transportation Systems under grant agreement no. 266470.

References

  1. 1.
    Anon.: Statistik der vom LBA erteilten Lizenzen für fliegendes Personal, Luftfahrtbundesamt. https://www.lba.de/DE/Presse/Statistiken/Statistik_Lizenzen.html (2018)
  2. 2.
    Anon.: Durchgeführte, bestandene und nicht bestandene Prüfungen zur Erlangung einer allgemeinen Fahrerlaubnis im Jahr 2017 nach Fahrerlaubnisklassen und Art der Prüfung Kraftfahrt-Bundesamt. https://www.kba.de/DE/Statistik/Kraftfahrer/Fahrerlaubnisse/Fahrerlaubnispruefungen/2017_fe_p_feklassen.html?nn=651942 (2018)
  3. 3.
    Drees, J.M.: Prepare for the 21st Century—the 1987 Alexander A. Nikolsky Lecture. In: Proceedings of the 43rd American Helicopter Society Annual Forum, St. Louis, MO, USA (1987)Google Scholar
  4. 4.
    Anon: Personal perspective on helicopter history, p. 43. Rotor Magazine, Helicopter Association, International (1999)Google Scholar
  5. 5.
    Stiles, L., Mayo, J., Freisner, A., Landis, K., Kothmann, B.: Impossible to resist: the development of rotorcraft fly-by-wire technology. In: Proceedings of the 60th American Helicopter Society Annual Forum, Virginia Beach, VA, USA (2004)Google Scholar
  6. 6.
    Rakotomamonjy, T., Binety, L., Müllhäuser, M.: ONERA-DLR joint research on tactile cueing for reactive obstacle avoidance dedicated to low speed helicopter manuevers. In: Proceedings of the 42nd European Rotorcraft Forum, Lille, France (2016)Google Scholar
  7. 7.
    Jones, M., Perfect, P., Jump, M., White, M.D.: Investigation of novel concepts for control of a personal air vehicle. In: American Helicopter Society 70th Annual Forum, Montréal, Québec, Canada (2014)Google Scholar
  8. 8.
    Nieuwenhuizen, F.M., Jump, M., Perfect, P., White, M.D., Padfield, G.D., Floreano, D., Schill, F., Zufferey, J.C., Fua, P., Bouabdallah, S., Siegwart, R., Meyer, S., Schippl, J., Decker, M., Gursky, B., Höfinger, M., Bülthoff, H.H.: myCopter—enabling technologies for personal aerial transportation systems. In: 3rd International HELI World Conference, Frankfurt/Main (2011)Google Scholar
  9. 9.
    Gursky, B.I., Müller, D.: Novel steering concepts for personal aerial vehicles, 62. Deutscher Luft- und Raumfahrtkongress, Stuttgart, Germany (2013)Google Scholar
  10. 10.
    Schuchardt, B.I.: PKW-ähnliche Steuerungskonzepte für den Einsatz im Hubschrauber, DLR German Aerospace Center, Institute of Flight Systems, FB 2017-65/TU Braunschweig, FB 2017-10, doctoral thesis (2017)Google Scholar
  11. 11.
    Duda, H., Gerlach, T., Advani, S., Potter, M.: Design of the DLR AVES research flight simulator. In: Proceedings of the AIAA Modeling and Simulation Technologies (MST) Conference, Boston, MA, USA (2013)Google Scholar
  12. 12.
    Schuchardt, B.I.: Towards handling qualities evaluations of a personal aerial vehicle in ground-based and in-flight simulation. In: American Helicopter Society 71st Annual Forum, Virginia Beach, Virginia, USA (2015)Google Scholar
  13. 13.
    Schuchardt, B.I., Greiser, S.: Preparing in-flight simulation of a personal aerial vehicle on DLR’s research helicopter ACT/FHS. In: 65 Deutscher Luft- und Raumfahrtkongress, Braunschweig, Germany (2016)Google Scholar
  14. 14.
    Perfect, P., White, M.D., Jump, M.: Development of pilot training requirements for personal aerial vehicles. In: Proceedings of the 40th European Rotorcraft Forum, Southampton, UK (2014)Google Scholar
  15. 15.
    Gotschlich, J., Gerlach, T., Durak, U.: 2Simulate: a distributed real-time simulation framework. ASIM STS/GMMS Workshop, Reutlingen, Germany (2014)Google Scholar
  16. 16.
    Perfect, P., Jump, M., White, M.: Methods to assess the handling qualities requirements for personal aerial vehicles. J. Guid. Control Dyn. 38(11), 2161–2172 (2015).  https://doi.org/10.2514/1.G000862 CrossRefGoogle Scholar
  17. 17.
    Anon.: ADS-33E-PRF, aeronautical design standard, performance specification, handling qualities requirements for military rotorcraft, USAAMC, (2000)Google Scholar
  18. 18.
    Gursky, B.I., Olsman, W.F.J., Peinecke, N.: Development of a tunnel-in-the-sky display for helicopter noise abatement procedures. CEAS Aeronaut. J. 5(2):199–208 (2014)CrossRefGoogle Scholar
  19. 19.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index), results of empirical and theoretical research. In: Hancock, P.A., Meshkatis, N. (eds.) Human mental workload, pp. 239–250. North Holland Press, Amsterdam (1988)Google Scholar
  20. 20.
    Anon.: IBM SPSS Advanced Statistics 20, IBM Corporation (2011)Google Scholar
  21. 21.
    Bühner, M., Ziegler, M.: Statistik für Psychologen und Sozialwissenschaftler. Pearson Studium, Munich (2009)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.DLR Institute of Flight Systems, German Aerospace CenterBrunswickGermany

Personalised recommendations