Two-stage leak detection in vacuum bags for the production of fibre-reinforced composite components

  • A. HaschenburgerEmail author
  • C. Heim
Original Paper


The increasing application of fibre-reinforced composite components in aviation results in new problems in production when compared to the conventional production of components from aluminium alloys. For instance, the existence of leakages in the vacuum bag can substantially impact the component quality. A significant increase of both time and cost, and even the rejection of the entire component are caused. Commercially available methods are suitable for identifying leakages in vacuum bags; however, their application is predominantly associated with high outlay in labour and time, and, thus, high costs. Market analysis and comparison of different available leakage detection technologies conducted in the course of the advanced detection of leakages project with our collaborative partner Airbus Operations GmbH Stade has shown that the combination of run-time based leakage detection and infrared thermography is the most promising concept for quick, reliable, and automated identification of leakages in vacuum bags for large components. In combination, both technologies are able to compensate for their respective detection limits, and significantly reduce the time required. In addition to the analysis and assessment of different technologies for leakage detection, the investigations presented also include the development of run-time based leakage detection using sensors integrated into the vacuum bag. Furthermore, the linking, further development, and automation of leakage detection using infrared thermography are described.


Leakage detection Vacuum bagging Infrared thermography Composite Autoclave 



The authors would like to thank the former and current colleagues and students who have contributed to the success of this project so far: Jens Bölke, Matthias Janzen, Lukas Groß, Jan-Timo Hesse, and Tobias Keil.


  1. 1.
    Lengsfeld, H., Wolff-Fabris, F., Krämer, J., Lacalle, J., Altstädt, V.: Faserverbundwerkstoffe—Prepregs und ihre Verarbeitung. Carl Hanser Verlag GmbH Co KG, Munich (2015)Google Scholar
  2. 2.
    Köber, M., Eberth, U.: Laminieren für Profis—Ein Trainingshandbuch für Faserverbundwerkstoffe, 2. Auflage, Airbus Deutschland GmbH, Hamburg (2007)Google Scholar
  3. 3.
    Deutsches Zentrum für Luft- und Raumfahrt eV; Bölke, J.; Krombholz, C.; Stefaniak, D.; Uçan, H.: Leak detection. Patent DE102011100096B4 (2011)Google Scholar
  4. 4.
    Atkins, P.W., de Paula, J., Bär, M. (Translator): Physikalische Chemie, 5th edn. Wiley, Weinheim (2013)Google Scholar
  5. 5.
    Uçan, H., Bölke, J., Krombholz, C., Gobbi, H., Meyer, M.: Robotergestützte Leckageerkennung an Vakuumaufbauten mittels Thermografie. DLRK—Deutscher Luft- und Raumfahrtkongress, 27–29 Sept, Bremen (2011)Google Scholar
  6. 6.
    Benne, M.E., Miller, F.B.: Leak detection in vacuum bags, Patent US 2011 0079174 A1 (2010)Google Scholar
  7. 7.
    Eret, P., Meskell, C.: Microphone arrays for compressed air leakage detection. In: 4th Berlin beamforming conference (2012)Google Scholar
  8. 8.
    Petricevic, R., Radestock, O.: Technical report: leakage-detection and -localization with vacuum-autoclave-processing of FRPs (iNDTact) (2015)Google Scholar
  9. 9.
    Pfeiffer Vacuum: Lecksucher—Das breiteste Angebot an Lösungen für die Lecksuche mit Helium und Wasserstoff. (2016)
  10. 10.
    Uçan, H., Akin, D., Tripmaker, A.: Einsatzmöglichkeiten von Thermografiemessungen im Autoklaven zur Prozessüberwachung und Qualitätskontrolle. DLRK—Deutscher Luft- und Raumfahrtkongress, 22–24 Sept, Rostock (2015)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.DLR Institute of Composite Structures and Adaptive SystemsStadeGermany
  2. 2.Manufacturing Engineering Technologies R&TAirbus Operations GmbH StadeStadeGermany

Personalised recommendations