Advertisement

CEAS Aeronautical Journal

, Volume 9, Issue 1, pp 85–92 | Cite as

Future regeneration processes for high-pressure turbine blades

  • M. Nicolaus
  • B. Rottwinkel
  • I. Alfred
  • K. Möhwald
  • C. Nölke
  • S. Kaierle
  • H. J. Maier
  • V. Wesling
Original Paper

Abstract

In this paper, new technologies for repairing turbine blades are presented, in which the manufacturing processes and materials mechanisms are incorporated. Since the turbine blades taken into consideration here are components of high pressure turbines, the focus of this paper lies on nickel-based alloys. Depending on the size and form of the defects present on the blades, two procedures can be used for repairing turbine blades: brazing and/or cladding. In one approach, a hybrid repair brazing process was developed, in which the filler metal and the hot gas corrosion protective coating were applied by thermal spraying. Subsequently, a combined brazing and aluminizing process was carried out. In a second approach, a laser cladding process for crack repair was developed wherein single crystalline solidification of the cladding material was carried out.

Keywords

Hybrid brazing Laser cladding Single crystal repair Thermal spraying 

Notes

Acknowledgements

The work presented here was supported by the German Research Foundation (DFG) within the scope of the sub-project B1 “Near net shape turbine blade repair using a joining and coating hybrid process” and subproject B5 “Single crystalline laser cladding” of the Collaborative Research Centre (SFB 871 “Product Regeneration”). The authors would like to thank the DFG for their support.

References

  1. 1.
    Henderson, M.B., Arrell, D., Larsson, R., Heobel, M., Marchant, G.: Nickel based superalloy welding practices for industrial gas turbine applications. Sci. Technol. Weld. Join. 9(1), 13–21 (2004)CrossRefGoogle Scholar
  2. 2.
    McGraw, J., Anton, R., Van Deventer, G., Burns, A.: Advancements in gas turbine vane repair. Proceedings of PWR 2006: ASME Power. Atlanta, Georgia, pp 385–389 (2006)Google Scholar
  3. 3.
    Stolle, R.: Conventional and advanced coatings for turbine airfoils. MTU Aero Engines, http://www.academia.edu/7789702/Conventional_and_advanced_coatings_for_turbine_airfoils (2004). Accessed 15 July 2015
  4. 4.
    Itoh, Y., Saitoh, M., Ishiwata, Y.: Aluminizing behaviours of vacuum plasma sprayed MCrAlY coatings. J. Eng. Gas Turbine Power 124, 270–275 (2002)CrossRefGoogle Scholar
  5. 5.
    Itoh, Y., Saitoh, M.: Mechanical properties of overaluminized MCrAlY coatings at room temperature. J. Eng. Gas Turbine Power 127, 807–813 (2005)CrossRefGoogle Scholar
  6. 6.
    Mokadem, S., Bezençon, C., Drezet, J.-M., Jacot, A., Wagnière, J.-D., Kurz, W.: Microstructure control during single crystal laser welding and depostion of NI-base superalloys. In: Proceedings of Symposium on Solidification Processes and Microstructures TMS Annual Meeting (2004)Google Scholar
  7. 7.
    Nicolaus, M., Möhwald, K., Bach, Fr.-W.: Repair brazing of turbine blades using thermal spraying, In: Konstantinos-Dionysios Bouzakis (Hg.): Proceedings. International Conference THE “A” coatings in manufacturing engineering (9, 2011 Thessaloniki). Thessaloniki: Ed. Ziti, S. 347–352. ISBN 978-960-98780-5-0 (2011)Google Scholar
  8. 8.
    Rottwinkel, B., Nölke, C., Kaierle, S., Wesling, V.: Crack repair of single crystal turbine blades using laser cladding technology. Procedia CIRP 22, 263–267 (2014)CrossRefGoogle Scholar
  9. 9.
    Nicolaus, M., Möhwald, K., Bach, Fr.W., Maier, H.J.: Heat treatment of thermal sprayed Ni-base-filler metal/NiCrAlY-coating systems for repairing turbine blades. Thermal spray. Bulletin 6(2), 119–123 (2013)Google Scholar
  10. 10.
    Weingaertner, W., Schweitzer, L., Rottwinkel, B., Noelke, C., Kaierle, S., Wesling, V.: Single-Crystal (SX) Laser Cladding of CMSX4, 8th Brazilian Congress of Manufacturing Engineering (COBEF). Brazilian Society of Engineering and Mechanical Sciences. Salvador/Brazil (2015)Google Scholar
  11. 11.
    Nicolaus, M., Möhwald, K., Maier, H.J.: Combined brazing and alitising process for thermally sprayed Ni-based alloys for the repair of turbine blades. Therm. Spray Bull. 8(1), 56–61 (2015)Google Scholar
  12. 12.
    Baufeld, B.: Mechanical properties of INCONEL 718 parts manufactured by shaped metal deposition (SMD). J. Mater. Eng. Perform. 21(7), 1416–1421 (2012)CrossRefGoogle Scholar
  13. 13.
    Rahmani, K., Nategh, S.: Mechanical properties of uncoated and aluminide-coated René 80. Metall. Mater. Trans. A 41, 125 (2010).  https://doi.org/10.1007/s11661-009-0046-4 CrossRefGoogle Scholar
  14. 14.
    Rahmani, Kh, Nategh, S.: Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80. Surf. Coat. Technol. 202, 1385–1391 (2008)CrossRefGoogle Scholar
  15. 15.
    Zhan, Z., He, Y., Li, L., Liu, H., Dai, Y.: Low-temperature formation and oxidation resistance of ultrafine aluminide coatings on Ni-base superalloy. Surf. Coat. Technol. 203, 2337–2342 (2009)CrossRefGoogle Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2017

Authors and Affiliations

  • M. Nicolaus
    • 1
  • B. Rottwinkel
    • 2
  • I. Alfred
    • 2
  • K. Möhwald
    • 1
  • C. Nölke
    • 2
  • S. Kaierle
    • 2
  • H. J. Maier
    • 1
  • V. Wesling
    • 2
  1. 1.Institut für WerkstoffkundeLeibniz Universität HannoverGarbsenGermany
  2. 2.Laser Zentrum Hannover e.VHannoverGermany

Personalised recommendations