Advertisement

CEAS Aeronautical Journal

, Volume 7, Issue 2, pp 185–207 | Cite as

Numerical investigations of Fenestron™ noise characteristics using a hybrid method

  • Jae Hun YouEmail author
  • Christian Breitsamter
  • Rainer Heger
Original Paper
  • 159 Downloads

Abstract

The present article gives an overview of numerical investigations performed during a research project aimed at in-depth understanding of noise generation mechanisms of a shrouded helicopter tail rotor such as Airbus Helicopters Fenestron\(^\mathrm{TM}\). Both aerodynamic and aeroacoustic studies are performed based on a full-scale lightweight transport helicopter configuration with detailed geometry of the Fenestron\(^\mathrm{TM}\) and by neglecting of the main rotor downwash effect. Analysis is carried out by using a hybrid method, combining Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulation with Ffowcs Williams and Hawkings (FW-H) acoustic analogy. Two representative helicopter flight conditions, namely fast forward flight and hovering, are considered. Thereby, it is intended to assess the influence of cross flow in forward flight condition on the Fenestron\(^\mathrm{TM}\) acoustic property. Effect of turbulence model on the accuracy of noise prediction is also investigated by comparing the Shear Stress Transport (SST) turbulence model with the Scale Adaptive Simulation (SAS). The capability of the applied hybrid methodology is estimated by means of flight test measurements. A good agreement is found between the predicted and measured sound spectra in terms of blade passing frequency (BPF) and its corresponding sidebands for both flight conditions investigated.

Keywords

Shrouded helicopter tail rotor Fenestron\(^\mathrm{TM}\) URANS FW-H Scale Adaptive Simulation (SAS) 

Notes

Acknowledgments

This work has been supported by the Bayerische Forschungsstiftung (BFS) within the frame of the FORLärm project. The support of these investigations by the Airbus Helicopters Deutschland GmbH is gratefully acknowledged. The authors wish to thank ANSYS, Inc. for providing the flow simulation software CFX. The authors would also like to thank C. Scheit, M.Sc. and Dr. S. Becker from the Lehrstuhl für Prozessmaschinen und Anlagentechnik, Universität Erlangen-Nürnberg for providing their in-house FW-H code SPySI. Computer resources for this project have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under grant: pr83nu.

References

  1. 1.
    Vuillet, A., Morelli, F.: New aerodynamic design of the fenestron for improved performance. In: Proceedings of the \(12^{\rm {th}}\) European Rotorcraft Forum, Garmisch-Partenkirchen. Germany (1986)Google Scholar
  2. 2.
    Niesl, G., Arnaud, G.: Low noise design of the EC135 Helicopter. In: Proceedings of the American Helicopter Society \(52^{\rm {nd}}\) Annual Forum. Washington, D.C (1996)Google Scholar
  3. 3.
    Gareton, V., Gervais, M., Heger, R.: Acoustic design and testing of the Eurocopter EC145T2 and EC175B—a harmonized Franco-German Approach. In: Proceedings of the \(39^{\rm {th}}\) European Rotorcraft Forum. Moscow, Russia (2013)Google Scholar
  4. 4.
    Weisgerber, M., Neuwerth, G.: Influence of a helicopter tail rotor shroud on the interaction noise due to the main rotor vortices. In: Proceedings of the \(29^{\rm {th}}\) European Rotorcraft Forum. Friedrichshafen, Germany (2003)Google Scholar
  5. 5.
    Mouille, R.: The “Fenestron\(^{\rm {TM}}\),” shrouded tail rotor of the SA. 341 Gazelle. J. Am. Helicopter Soc. 15(4), 31–37 (1970)CrossRefGoogle Scholar
  6. 6.
    Vialle, M., Arnaud, G.: A new generation of Fenestron fan-in-fin tail rotor on EC135. In: Proceedings of the \(19^{\rm {th}}\) European Rotorcraft Forum. Cernobbio, Italy (1993)Google Scholar
  7. 7.
    Roger, M.: Contrôle du bruit aérodynamique des machines tournantes axiales par modulation de pales. Acta Acust. United Acust. 80(3), 247–259 (1994)Google Scholar
  8. 8.
    Mouterde, E., Sudre, L., Dequin, A.M., D’Alascio, A., Haldenwang, P.: Aerodynamic computation of isolated fenestron in hover conditions. In: Proceedings of the \(33^{rd}\) European Rotorcraft Forum. Kazan, Russia (2007)Google Scholar
  9. 9.
    D’Alascio, A., Le Chuiton, F., Mouterde, E., Sudre, L., Kirstein, S., Kau, H.P.: Aerodynamic study of the EC135 Fenestron in hovering flight conditions by means of CFD. In: Proceedings of the American Helicopter Society \(64^{th}\) Annual Forum. Montréal, Canada (2008)Google Scholar
  10. 10.
    Kainz, M., Danner, F., Kau, H.P., Le Chuiton, F.: Numerical investigation into the unsteady aerodynamics of a ducted helicopter tail rotor under side-wind conditions. In: Proceedings of ASME Turbo EXPO 2010. Glasgow, UK (2010)Google Scholar
  11. 11.
    Roger, M., Fournier, F.: An analysis of in-fin tail rotor noise. In: Proceedings of the \(12^{\rm {th}}\) European Rotorcraft Forum. Garmisch-Partenkirchen, Germany (1986)Google Scholar
  12. 12.
    Kainz, M., Le Chuiton, F.: Near-field noise reduction of a ducted helicopter tail rotor due to a modified stator vane geometry. In: Proceedings of the ASME Turbo EXPO 2012. Copenhagen, Denmark (2012)Google Scholar
  13. 13.
    Kainz, M., Le Chuiton, F., Kau, H.P.: Aeroacoustic near-field study of a ducted helicopter tail rotor with different vane count by use of phase-lagged boundaries. In: Proceedings of the \(14^{th}\) International Symposium on transport phenomena and dynamics of rotating machinery. Honolulu (2012)Google Scholar
  14. 14.
    Roger, M., Moreau, S., Guédel, A.: Vortex-shedding noise and potential-interaction noise modeling by a Reversed Sears’ Problem. In: Proceedings of the \(12^{th}\) AIAA/CEAS Aeronautics Conference. Cambridge (2006)Google Scholar
  15. 15.
    Roger, M.: Modélisation du bruit de raies d’un fenestron d’hélicoptère en vol d’avancement. Acta Acust. United Acust. 82, 238–250 (1996)MathSciNetGoogle Scholar
  16. 16.
    Gardarein, P., Canard, S., Prieur, J.: Unsteady aerodynamic and aeroacoustic simulations of a Fenestron tail rotor. In: Proceedings of the American Helicopter Society \(62^{\rm {nd}}\) Annual Forum. Arizona, Phoenix (2006)Google Scholar
  17. 17.
    Gardarein, P., Falissard, F., Binet, L., Camus, J.C.: Validation of aerodynamic and aeroacoustic computations of a fenestorn in real flight conditions. In: Proceedings of the \(36^{th}\) European Rotorcraft Forum. Paris, France (2010)Google Scholar
  18. 18.
    Falissard, F., Desmerger, F., Gardarein, P., Binet, L., Camus, J.C.: Aeroacoustic flight test data analysis for the validation of Fenestron noise computations. In: Proceedings of the American Helicopter Society \(67^{\rm {th}}\) Annual Forum. Virginia Beach (2011)Google Scholar
  19. 19.
    Ganesh Rajagopalan, R., Keys, C.N.: Detailed aerodynamic analysis of the RAH-66 FANTAIL using CFD. J. Am. Helicopter Soc. 42(4):310–320 (1997)Google Scholar
  20. 20.
    Alpmann, E., Long L.N., Kothmann, B.D.: Understanding ducted-rotor antitorque and directional control characteristics part I: steady-state simulation. J. Aircraft 41(5) (2004)Google Scholar
  21. 21.
    Alpmann, E., Long, L.N., Kothmann, B.D.: Understanding ducted-rotor antitorque and directional control characteristics part II: unsteady simulations. J. Aircraft 41(5) (2004)Google Scholar
  22. 22.
    Ruzicka, G.C., Strawn, R.C., Meadowcroft, E.T.: Discrete-blade, Navier-Stokes computational fluid dynamics analysis of ducted-fan flow. J. Aircraft 42(5) (2005)Google Scholar
  23. 23.
    Lee, H.D., Kwon, O.J.: Detailed aerodynamic analysis of a shrouded tail rotor using an unstructured mesh flow solver. Trans. Jpn. Soc. Aeronaut. Space Sci. 47(155), 23–29 (2004)CrossRefGoogle Scholar
  24. 24.
    Edwards, B., Andrews, J., Rahnke, C.: Ducted tail rotor design for rotorcraft and their low noise features. In: Proceedings of FVP Symposium on Advanced in Rotorcraft Technology. Ottawa (1996)Google Scholar
  25. 25.
    Chung, K.H., Song, K.W., Kim, S.B., Hwang, C.J., Joo, G.N.: Development of low noise ducted-fan tail rotor for helicopter antitorque system. In: Proceedings of the \(13^{\rm {th}}\) International Congress on Sound and Vibration. Vienna (2006)Google Scholar
  26. 26.
    Thouault, N., Breitsamter, C., Adams, N.A.: Numerical investigation of inlet distortion on a wing-embedded lift fan. AIAA J. propuls. Power 27(1), 16–28 (2011)CrossRefGoogle Scholar
  27. 27.
    Thouault, N.: Aerodynamic investigation on generic fan-in-wing configurations. Ph.D. Thesis, Technische Universität München (2010)Google Scholar
  28. 28.
    Tirakala, J., Thouault, N., Breitsamter, C., Adams, N.A.: Aeroacoustic investigations of a generic fan-in-wing configuration. Internoise, Osaka (2011)Google Scholar
  29. 29.
    Yerry, M.A., Shephard, M.S.: Three-dimensional mesh generation by modified octree technique. Int. J. Numer. Meth. Eng. 20, 1965–1990 (1984)CrossRefzbMATHGoogle Scholar
  30. 30.
    ANSYS, Inc.: CFX-Solver Theory Guide Release 13.0 (2010)Google Scholar
  31. 31.
    Menter, F.R.: Two-equation Eddy-Viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  32. 32.
    Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul. Combust. 85, 113–138 (2010)Google Scholar
  33. 33.
    ANSYS, Inc.: CFX-Solver Modeling Guide Release 13.0 (2010)Google Scholar
  34. 34.
    Barth, T.J., Jesperson, D.C.: The design and application of upwind schemes on unstructured meshes. AIAA Paper 89–0366 (1989)Google Scholar
  35. 35.
    Leonard, B.P.: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput. Methods Appl. Mech. Eng. 88, 17–74 (1991)CrossRefzbMATHGoogle Scholar
  36. 36.
    Jasak, H., Weller, H.G., Gosman, A.D.: High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids, 31, 431–449 (1999)Google Scholar
  37. 37.
    Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. Lond. 264(1151), 321–342 (1969)Google Scholar
  38. 38.
    Farassat, F.: Derivation of Formulations 1 and 1A of Farassat, vol. 214853. NASA Technical Memorandum (2007)Google Scholar
  39. 39.
    Scheit, C.L.: Implementation of Ffowcs Williams and Hawkings (FW-H) method for aeroacoustic prediction. Master Thesis, Universität Erlangen, Germany (2008)Google Scholar
  40. 40.
    Scheit, C.L., Karic, B., Becker, S.: Effect of blade wrap angle on efficiency and noise of small radial fan impellers - A computational and experimental study. J. Sound Vib. 331(5), 996–1010 (2012)CrossRefGoogle Scholar
  41. 41.
    Ewald, D., Pavlovic, A., Bollinger, J.G.: Noise reduction by applying modulation principles. J. Acoust. Soc. Am. 49(5A), 1381–1385 (1971)CrossRefGoogle Scholar
  42. 42.
    Spiegel, P., Guntzer, F., Le Duc, A., Buchholz, H.: Aeroacoustic flight test data analysis and guidelines for noise-abatement-procedure design and piloting. In: Proceedings of the \(34^{th}\) European Rotorcraft Forum. Liverpool (2008)Google Scholar
  43. 43.
    Le Duc, A., Spiegel, P., Guntzer, F., Lummer, M., Buchholz, H., Götz, J.: Simulation of complete helicopter noise in Maneuver Flight using aeroacoustic flight test database. In: Proceedings of the American Helicopter Society \(64^{th}\) Annual Forum. Montréal (2008)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2016

Authors and Affiliations

  • Jae Hun You
    • 1
    Email author
  • Christian Breitsamter
    • 1
  • Rainer Heger
    • 2
  1. 1.Institute of Aerodynamics and Fluid MechanicsTechnische Universität MünchenGarchingGermany
  2. 2.Airbus Helicopters Deutschland GmbHDonauwörthGermany

Personalised recommendations