Advertisement

CEAS Aeronautical Journal

, Volume 7, Issue 1, pp 83–94 | Cite as

About the interaction between composition and performance of alternative jet fuels

  • Marina Braun-UnkhoffEmail author
  • Trupti Kathrotia
  • Bastian Rauch
  • Uwe Riedel
Original Paper

Abstract

Since the last decade, the aviation sector is looking for alternatives to kerosene derived from crude oil triggered also by commitments and policy packages, such as the ‘Flightpath 2050’ initiative and the comprehensive alternative fuels strategy, both released by the European Commission. An aircraft need with regard to a fuel is very strict, with severe constraints to ensure a safe and reliable operation for the whole flight envelope. When synthesizing a jet fuel from scratch, two important aspects need to be addressed: First, the safety aspect—the new fuel candidate must be certified, qualifying through several well-defined cost and time expensive tests, according to the approval protocol; secondly, the environmental aspect. Alternative aviation fuels alike Jet A-1 are composed of hydrocarbons; however, the amount and type of hydrocarbons (chemical family) differ considerably. The question is how the composition of the fuel will affect its suitability and performance: (i) thermo-physical and thermo-chemical properties of the new components to exclude any shortcomings with respect to performance and safety issues, and (ii) the new fuel combustion characteristics, i.e., ignition, flame speed, and emission pattern (pollutants), in particular. These issues are addressed in the present study. Thus, the road will be paved for developing a generalize science-based tool to investigate in an efficient way if a new fuel candidate may meet the fuel specifications.

Keywords

Alternative aviation fuels Combustion Molecular properties Modeling Ignition Laminar flame speed 

Notes

Acknowledgements

The financial support of the Federal Ministry for Economic Affairs and Energy (Germany) within InnoTreib is gratefully acknowledged. The authors thank P. Le Clercq for fruitful discussions and M. Estellar for assistance in gathering properties’ values.

References

  1. 1.
    Intergovernmental Panel on Climate Change (IPCC) in: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the IPCC. O. Edenhofer et al. (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, http://www.ipcc.ch/report/ar5/wg3/ (2014)
  2. 2.
    Kohse-Höinghaus, K., Oßwald, P., Cool, T.A., Kasper, T., Hansen, N., Qi, F., Westbrook, C.K., Westmoreland, P.R.: Biofuel combustion chemistry: from ethanol to biodiesel. Angew. Chem. Int. Ed. 49, 3572–3597 (2010)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Advisory Council on Aeronautics Research in Europe (ACARE), “Acare addendum to the strategic research agenda”. http://www.acare4europe.com/docs/ACARE_2008_Addendum.pdf (2008)
  5. 5.
    ALFA-BIRD: Alternative Fuels and Biofuels for Aircraft, EUFP7/2007-2013, grant agreement no° 213266; co-ordinator: EU-VRi, (Germany). http://www.alfa-bird.eu-vri.eu
  6. 6.
    SWAFEA: Sustainable Way for Alternative Fuels and Energy for Aviation, EU, DG-TREN, final report. http://www.icao.int/environmental-protection/GFAAF/Documents/SW_WP9_D.9.1%20Final%20report_released%20July2011.pdf
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    ASTM Standard D1655. www.astm.org
  11. 11.
  12. 12.
  13. 13.
    FT-fuels approved, announcement. http://www.astmnewsroom.org/default.aspx?pageid=1895 (2011)
  14. 14.
    HEFA approved, announcement. http://www.astmnewsroom.org/default.aspx?pageid=2524 (2011)
  15. 15.
    SIP-fuels approved, announcement. http://www.astmnewsroom.org/default.aspx?pageid=3463 (2014)
  16. 16.
    Wahl, C., Aigner, M.: Aircraft gas turbine soot emission tests under technical relevant conditions in an altitude test facility and validation of soot measurement technique. GT2003-38797, Proc. ASME Turbo Expo 2003, Atlanta, USA (2003)Google Scholar
  17. 17.
    Steil U., Braun-Unkhoff M., Frank P., Aigner M.: An experimental and modelling study on the autoignition of kerosene and surrogate fuel mixture. AIAA-2008-0973, Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA (2008)Google Scholar
  18. 18.
    Le Clercq, P., Aigner, M.: Impact of alternative fuels physical properties on combustor performance. ICLASS 2009, 11th Triennial Internat. Annual Conference on Liquid Atomization and Spray Systems, Vail, USA (2009)Google Scholar
  19. 19.
    Kick, Th, Herbst, J., Kathrotia, T., Marquetand, J., Braun-Unkhoff, M., Naumann, C., Riedel, U.: An experimental and modeling study of burning velocities of possible future synthetic jet fuels. Energy 43(1), 111–123 (2012)CrossRefGoogle Scholar
  20. 20.
    MzéAhmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, Th, Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J., Naumann, C., Riedel, U.: Oxidation of a coal-to-liquid synthetic jet fuel: experimental and chemical kinetic modeling study. Energy Fuels 26(10), 6070–6079 (2012)CrossRefGoogle Scholar
  21. 21.
    Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick, Th, Naumann, C., Riedel, U., Thomas, L.: Experimental and detailed kinetic model for the oxidation of a gas to liquid (GtL) jet fuel. Combust. Flame 161, 835–847 (2014)CrossRefGoogle Scholar
  22. 22.
    InnoTreib—Innovative Treibstoffe der Zukunft, Project funded by Bundesministerium für Wirtschaft und Energie, Germany, 2014–2017Google Scholar
  23. 23.
  24. 24.
    Braun-Unkhoff, M., Le Clercq, P., Aigner, M.: Alternative fuels and biofuels for aircraft development. In: Proceedings of 17th European Biomass Conference and Exhibition, Hamburg, Germany (2009)Google Scholar
  25. 25.
    Blakey, S., Rye, L., Wilson, C.W.: Aviation gas turbine alternative fuels: a review. Proc. Comb. Inst. 33, 2863–2885 (2011)CrossRefGoogle Scholar
  26. 26.
    Braun-Unkhoff, M., Riedel, U.: Alternative Fuels in Aviation. CEAS Aeronautical Journal 6(1), 83–93 (2015). doi: 10.1007/s13272-014-0131-2. (ISSN 1869-5590) CrossRefGoogle Scholar
  27. 27.
    Edwards, C., Moses, C., Dryer, F.L.: Evaluation of Combustion Performance of Alternative Aviation Fuels. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, USA, AIAA 2010–7155 (2010)Google Scholar
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
    Mosbach, T., Burger, V., Gunasekaran, B.: Fuel Influence on targeted gas turbine combustion properties: part I—detailed diagnostics. In: Proceedings of ASME Turbo Expo 2014, Düsseldorf, Germany, GT2014-25075 (2014)Google Scholar
  33. 33.
    Burger, V., Yates, A., Mosbach, T., Gunasekaran, B.: Fuel influence on targeted gas turbine combustion properties: part II—detailed results. 2014, Düsseldorf, Germany, GT2014-25105 (2014)Google Scholar
  34. 34.
  35. 35.
  36. 36.
  37. 37.
    Wahl, C., Kapernaum M.: EU FP5 G4RD-CT-00075. Final Report, DLR, Stuttgart, Germany (2003)Google Scholar
  38. 38.
    Moses, C.A.: Comparison of Semi-Synthetic Jet Fuels. CRC Project No. AV-2-04a. Contract. Coordinating Research Council, Inc. (2008)Google Scholar
  39. 39.
  40. 40.
    American Institute of Chemical Engineers (AIChE), Evaluated Process Design Data, Public Release Documentation, Design Institute for Physical Properties (DIPPR), Project 801 (2006)Google Scholar
  41. 41.
    Sheldon, M.: A study of the flammability limits of gases and vapors. Fire Prev. 174, 23–31 (1984)Google Scholar
  42. 42.
    Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The properties of gases and liquids, 5th edn. McGraw-Hill Professional, New York (2000)Google Scholar
  43. 43.
    Frenkel, M., Chirico, R.D., Diky, V., Muzny, C.D., Lemmon, E.W, Yan, X., Dong, Q.: NIST Standard Reference Database 103a, NIST ThermoData Engine, Version 2.1; Standard Reference Data. Gaithersburg, MD (USA), National Institute of Standards and Technology—NIST (2005)Google Scholar
  44. 44.
    Hadaller, O.J., Johnson, J.M.: World Fuel Sampling Program. CRC Report No. 647, Coordinating Research Council, Inc., Alpharetta, GA 30022 (2006) http://www.crcao.com/publications/aviation/index.html
  45. 45.
    Le Clercq, P., Di Domenico, M., Rachner, M., Ivanova, E., Aigner, M.: Impact of Fischer-Tropsch fuels on aero-engine combustion performance. 48th AIAA Aerospace Sciences Meeting, Orlando, USA (2010)Google Scholar
  46. 46.
    Dagaut, P., Cathonnet, M.: The ignition, oxidation, and combustion of kerosene: a review of experimental and kinetic modeling. Prog. Energ. Combust. 32, 48–92 (2006)CrossRefGoogle Scholar
  47. 47.
    Slavinskaya, N., Riedel, U., Saibov, E., Kumaran, K.: Surrogate Model Design for GTL Kerosene. In: Proceedings 50th AIAA Aerospace Sciences Meeting and Exhibit, Nashville, USA (2012)Google Scholar
  48. 48.
    Hui, X., Kumar, K., Sung, C., Edwards, T., Gardner, D.: Experimental Studies on the combustion characteristics of alternative jet fuels. Fuel 98, 176–182 (2012)CrossRefGoogle Scholar
  49. 49.
    Jeyashekar, N., Muzzell, P., Sattler, E., Hubble, N.: Lubricity and derived cetane number measurements of jet fuels, alternative fuels and fuel blends. Interim report TFLRF No. 405, US Army TARDEC fuels and lubricants research facility, San Antonio (2010)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2015

Authors and Affiliations

  • Marina Braun-Unkhoff
    • 1
    Email author
  • Trupti Kathrotia
    • 2
  • Bastian Rauch
    • 2
  • Uwe Riedel
    • 1
  1. 1.Institute of Combustion TechnologyGerman Aerospace Center (DLR)StuttgartGermany
  2. 2.Institute of Combustion Technology for Aerospace EngineeringStuttgart UniversityStuttgartGermany

Personalised recommendations